Nonalcoholic fatty liver disease (NAFLD) is an emerging disease with a broad spectrum of liver conditions. The complex molecular pathogenesis of NAFLD is still unclear. In this study, we conducted an analysis of microRNA (miRNA) expression profiles in liver of rats made NAFLD by different diets. To this aim, Sprague-Dawley rats were fed ad libitum for 3 months with different diets: standard diet (SD), diet enriched in fats and low in carbohydrates (HFD), SD with high fructose (SD-HF) and diet with high levels of fats and fructose (HFD-HF). Our results demonstrated that the treatment with different dietetic regimens caused a significant increase of the body weight and the alteration of some metabolic parameters compared with control animals, as well as various liver injuries. The miRNAs analysis showed the significant downregulation of three miRNAs (miR-122, miR-451 and miR-27) and the upregulation of miR-200a, miR-200b and miR-429 in HFD, SD-HF and HFD-HF rats. Besides, miR-21 expression was significantly decreased only in fructose-enriched diets. These miRNAs target molecules involved in the control of lipid and carbohydrate metabolism, signal transduction, cytokine and chemokine-mediated signaling pathway and apoptosis. Western blot analysis of PKCδ, LITAF, ALDOLASE-A, p38MAPK, PTEN, LIPIN1, EPHRIN-A1, EPHA2 and FLT1 showed a diet-induced deregulation of all these proteins. Interestingly, the expression pattern of LITAF, PTEN, LIPIN1, EPHRIN-A1, EPHA2 and FLT1 might be well explained by the trend of their specific mRNAs, by potentially regulatory miRNAs, or both. In conclusion, we highlight for the first time the potential involvement of novel determinants (miRNAs and proteins) in the molecular pathogenesis of diet-induced NAFLD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/labinvest.2010.166 | DOI Listing |
Alzheimers Dement
December 2024
Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Background: Adenosine receptor 1 (A1R) is the predominant subtype of adenosine receptors, primarily distributed in memory-associated brain regions such as the cortex, hippocampus, and cerebellum. It actively participates in plasticity-regulated synaptic transmission and is crucial for functions related to sleep, arousal, cognition, learning, and memory. In a recent study, we reported that an elevation in A1R signaling mediates aberrant neuron-glial crosstalk in Alzheimer's disease.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Linkoping University, Linkoping, Sweden.
Background: Excessive dietary fat is not only a risk factor for metabolic disorders but also for premature cognitive decline and Alzheimer's disease. Recent findings from our study revealed that even a few days of a high-fat diet (HFD) are sufficient to disrupt hippocampal bioenergetics, activate microglia, and induce cognitive decline in mice. We hypothesize that microglia, rather than merely responding to diet-induced damage, play a critical role in disrupting synaptic homeostasis.
View Article and Find Full Text PDFSci Rep
January 2025
Cardiovascular Institute, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
Heart failure with preserved ejection fraction (HFpEF) is increasingly common but its pathogenesis is poorly understood. The ability to assess genetic and pharmacologic interventions is hampered by the lack of robust preclinical mouse models of HFpEF. We developed a novel "two-hit" model, which combines obesity and insulin resistance with chronic pressure overload to recapitulate clinical features of HFpEF.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
January 2025
Islet Biology and Metabolism Lab - IBM Lab, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina - UFSC, Florianópolis, Santa Catarina, Brazil.
Aims: This study investigates the role of Hepatocyte Nuclear Factor 4α (HNF4α) in the adaptation of pancreatic β-cells to an HFD-induced obesogenic environment, focusing on β cell mass expansion and metabolic adaptations.
Main Methods: We utilized an HNF4α knockout (KO) mouse model, with CRE-recombinase enzyme activation confirmed through tamoxifen administration. KO and Control (CTL) mice were fed an HFD for 20 weeks.
Phytomedicine
December 2024
Shanghai 411 Hospital, School of Medicine, Shanghai University, Shanghai, 200444, PR China. Electronic address:
Background: Endothelial-to-mesenchymal transition (EndMT) has been identified as a key factor to the initiation and progression of the pathogenesis of atherosclerosis (AS). Salvianic acid A (SAAS) is the primary water-soluble bioactive ingredient found in Salvia miltiorrhiza, is renowned for its therapeutic effects on cardiovascular diseases. However, the efficacy and mechanisms of SAAS in treating EndMT-induced AS remain underexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!