A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Single amino acid change alters the ability to specify male or female organ identity. | LitMetric

Single amino acid change alters the ability to specify male or female organ identity.

Proc Natl Acad Sci U S A

Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom.

Published: November 2010

The molecular mechanisms underlying the developmental processes that shape living organisms provide a basis to understand the evolution of biological complexity. Gene duplication allows biological functions to become separated, leading to increased complexity through subfunctionalization. Recently, the relative contributions to morphological evolution of changes to the regulatory and/or coding regions of duplicated genes have been the subject of debate. Duplication generated multiple copies of the MADS-box transcription factor genes that play essential roles in specifying organ identity in the flower, making this evolutionary novelty a good model to investigate the nature of the changes necessary to drive subfunctionalization. Here, we show that naturally occurring variation at a single amino acid in a MADS-box transcription factor switches its ability to specify male and female reproductive organs by altering its repertoire of protein-protein interactions. However, these different developmental fates are only manifest because of an underlying variation in the expression pattern of interacting proteins. This shows that the morphological outcomes of changes to protein sequence and gene expression must be interpreted in the context of the wider regulatory network. It also suggests an explanation for the surprisingly widespread duplications of some of the floral transcription factors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2973880PMC
http://dx.doi.org/10.1073/pnas.1009050107DOI Listing

Publication Analysis

Top Keywords

single amino
8
amino acid
8
ability male
8
male female
8
organ identity
8
mads-box transcription
8
transcription factor
8
acid change
4
change alters
4
alters ability
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!