Human choriocarcinoma cells have been used as models for studying transcellular drug transport through placental trophoblasts. However, these models allow the transport of low-molecular-weight drugs through intercellular gap junctions. This study aimed at investigating the differentiation patterns of JEG-3 choriocarcinoma cells under different culture conditions and establishing the appropriate model of in vitro syncytiotrophoblast drug transport. Paracellular permeability was estimated by measuring the transepithelial electrical resistance (TEER) across JEG-3 cell layers. The mRNA expression levels of non-expressed in choriocarcinoma clone 1 (NECC1) and breast cancer resistance protein (BCRP), and those of E-cadherin (ECAD) and cadherin-11 (CDH11), which are adherens junction-associated proteins related to fusogenic ability of syncytiotrophoblasts differentiated from cytotrophoblasts, protein expression levels were considered as the differentiation signals. The highest TEER values were obtained in the JEG-3 cells cultured in the Dulbecco's modified Eagle's medium (DMEM)/Ham's F-12 (1:1) mixed medium (CS-C(®) ; Dainippon Sumitomo Pharma Co. Ltd., Osaka, Japan). By comparing the TEER values and the differentiation signals, the authors identified at least five JEG-3 cell-differentiation patterns. The differentiation pattern of JEG-3 cultured in CS-C resembled the syncytiotrophoblast-like differentiation signal characterizations in vivo. In conclusion, the syncytiotrophoblast-like models of differentiating JEG-3 cells cultured in CS-C might be appropriate for evaluating drug transport across the placental trophoblast.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1742-7843.2010.00634.xDOI Listing

Publication Analysis

Top Keywords

drug transport
16
choriocarcinoma cells
12
differentiating jeg-3
8
human choriocarcinoma
8
transport placental
8
expression levels
8
differentiation signals
8
teer values
8
jeg-3 cells
8
cells cultured
8

Similar Publications

Human liver cell-based assays for the prediction of hepatic bile acid efflux transporter inhibition by drugs.

Expert Opin Drug Metab Toxicol

January 2025

Institut de R&D Servier, Paris-Saclay, F-91190 Gif-sur-Yvette, France.

Introduction: Drug-mediated inhibition of bile salt efflux transporters may cause liver injury. In vitro prediction of drug effects toward canalicular and/or sinusoidal efflux of bile salts from human hepatocytes is therefore a major issue, which can be addressed using liver cell-based assays.

Area Covered: This review, based on a thorough literature search in the scientific databases PubMed and Web of Science, provides key information about hepatic transporters implicated in bile salt efflux, the human liver cell models available for investigating functional inhibition of bile salt efflux, the different methodologies used for this purpose, and the modes of expression of the results.

View Article and Find Full Text PDF
Article Synopsis
  • Recent research indicates that blocking the RIPK1/RIPK3/MLKL necrosome can help reduce inflammatory pain linked to conditions like demyelination in the central nervous system.
  • This study tests necrostatin-1s (Nec-1s), a specific RIPK1 inhibitor, on LPS-induced inflammatory pain in male mice, assessing pain sensitivity through hot plate tests and examining related protein changes.
  • Results show that Nec-1s not only prevents LPS-induced pain relief but also reverses the activation of key proteins and signals involved in inflammation and demyelination, suggesting that RIPK1 inhibitors could be a promising treatment for managing inflammatory pain.
View Article and Find Full Text PDF

Chemotherapy is a potent tool against cancer, but drug resistance remains a major obstacle. To combat this, understanding the molecular mechanisms behind resistance in cancer cells and the protein expression changes driving these mechanisms is crucial. Targeting the Ubiquitin-Proteasome System (UPS) has proven effective in treating multiple myeloma and shows promise for solid tumours.

View Article and Find Full Text PDF

Resinacein S ameliorates the obesity in mice via activating the brown adipose tissue.

Pak J Pharm Sci

January 2025

Department of Endocrinology, Gongli Hospital of Shanghai Pudong New Area, School of Gongli Hospital Medical Technology, University of Shanghai for Science and Technology, Shanghai, China.

Brown adipose tissue (BAT) is an ideal target organ for obesity treatment. Resinacein S is extracted from Ganoderma lucidum and can elevate Uncoupling protein 1 (UCP1) in cells, but its related effects at the animal level are not clear. The mice were fed with high-fat diet to construct obesity models and treated with Resinacein S.

View Article and Find Full Text PDF

Real-world effectiveness and safety of sodium-glucose co-transporter 2 inhibitors in chronic kidney disease.

Sci Rep

January 2025

Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.

Article Synopsis
  • SGLT2 inhibitors (SGLT2i) show promise in slowing chronic kidney disease (CKD) progression but lack extensive real-world data in diverse populations.
  • This study analyzed data from nearly 7,000 CKD patients (stages 2-4) treated with either SGLT2i or RAAS blockers to evaluate effectiveness and safety.
  • Results indicated that SGLT2i therapy was linked to a significantly lower risk of severe kidney-related events and CKD progression, with similar adverse event rates and fewer urinary tract infections compared to RAAS treatment.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!