PAS domains form a divergent protein superfamily with more than 20 000 members that perform a wide array of sensing and regulatory functions in all three domains of life. Only nine residues are well-conserved in PAS domains, with an Asn residue at the start of α-helix 3 showing the strongest conservation. The molecular functions of these nine conserved residues are unknown. We use static and time-resolved visible and FTIR spectroscopy to investigate receptor activation in the photosensor photoactive yellow protein (PYP), a PAS domain prototype. The N43A and N43S mutants allow an investigation of the role of side-chain hydrogen bonding at this conserved position. The mutants exhibit a blue-shifted visible absorbance maximum and up-shifted chromophore pK(a). Disruption of the hydrogen bonds in N43A PYP causes both a reduction in protein stability and a 3400-fold increase in the lifetime of the signaling state of this photoreceptor. A significant part of this increase in lifetime can be attributed to the helical capping interaction of Asn43. This extends the known importance of helical capping for protein structure to regulating functional protein kinetics. A model for PYP activation has been proposed in which side-chain hydrogen bonding of Asn43 is critical for relaying light-induced conformational changes. However, FTIR spectroscopy shows that both Asn43 mutants retain full allosteric transmission of structural changes. Analysis of 30 available high-resolution structures of PAS domains reveals that the side-chain hydrogen bonding of residue 43 but not residue identity is highly conserved and suggests that its helical cap affects signaling kinetics in other PAS domains.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2999845 | PMC |
http://dx.doi.org/10.1021/ja107716r | DOI Listing |
Noncoding RNA
January 2025
Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany.
Aging leads to cognitive decline and increased risk of neurodegenerative diseases. While molecular changes in central nervous system (CNS) cells contribute to this decline, the mechanisms are not fully understood. Long non-coding RNAs (lncRNAs) are key regulators of cellular functions.
View Article and Find Full Text PDFNat Commun
January 2025
NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
Membrane bound histidine kinases (HKs) are ubiquitous sensors of extracellular stimuli in bacteria. However, a uniform structural model is still missing for their transmembrane signaling mechanism. Here, we used solid-state NMR in conjunction with crystallography, solution NMR and distance measurements to investigate the transmembrane signaling mechanism of a paradigmatic citrate sensing membrane embedded HK, CitA.
View Article and Find Full Text PDFJ Physiol
January 2025
College of Medicine, Department of Pharmacology, University of Arizona, Tucson, AZ, USA.
The endocannabinoid system's significance in maintaining blood-brain barrier (BBB) integrity under physiological and pathological conditions is suggested by several reports, but the underlying molecular mechanisms are not well understood. In this paper, we investigated the effects of depletion of 2-arachidonoylglycerol (2-AG), one of the main endocannabinoids in the central nervous system, on BBB integrity using pharmacological tools. Female Sprague-Dawley rats were injected with the diacylglycerol lipase α (DAGLα) inhibitor LEI-106 (40 mg/kg, i.
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Hypoxia, or a state of low tissue oxygenation, has been characterized as an important feature of solid tumors that is related to aggressive phenotypes. The cellular response to hypoxia is controlled by Hypoxia-inducible factors (HIFs), a family of transcription factors. HIFs promote the transcription of gene products that play a role in tumor progression including proliferation, angiogenesis, metastasis, and drug resistance.
View Article and Find Full Text PDFBiochem Pharmacol
January 2025
Institute of Medical Research at the San Carlos Clinic Hospital (IdISSC), Madrid, Spain; Department of Cell Biology, Faculty of Medicine, Complutense University of Madrid, Spain.
PAS domain-containing serine/threonine-protein kinase (PASK) is a nutrient and energy sensor regulated by fasting/refeeding conditions in hypothalamic areas involved in controlling energy balance. In this sense, PASK plays a role in coordinating the activation/inactivation of AMP-activated protein kinase (AMPK) and mechanistic target of rapamycin (mTOR) in response to fasting. PASK deficiency protects against the development of diet-induced obesity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!