Electrochemical properties and myocyte interaction of carbon nanotube microelectrodes.

Nano Lett

Biomedical Engineering Interdepartmental Program, University of California, Los Angeles, Los Angeles, California 90095, USA.

Published: November 2010

Arrays of carbon nanotube (CNT) microelectrodes (nominal geometric surface areas 20-200 μm(2)) were fabricated by photolithography with chemical vapor deposition of randomly oriented CNTs. Raman spectroscopy showed strong peak intensities in both G and D bands (G/D = 0.86), indicative of significant disorder in the graphitic layers of the randomly oriented CNTs. The impedance spectra of gold and CNT microelectrodes were compared using equivalent circuit models. Compared to planar gold surfaces, pristine nanotubes lowered the overall electrode impedance at 1 kHz by 75%, while nanotubes treated in O(2) plasma reduced the impedance by 95%. Cyclic voltammetry in potassium ferricyanide showed potential peak separations of 133 and 198 mV for gold and carbon nanotube electrodes, respectively. The interaction of cultured cardiac myocytes with randomly oriented and vertically aligned CNTs was investigated by the sectioning of myocytes using focused-ion-beam milling. Vertically aligned nanotubes deposited by plasma-enhanced chemical vapor deposition (PECVD) were observed to penetrate the membrane of neonatal-rat ventricular myocytes, while randomly oriented CNTs remained external to the cells. These results demonstrated that CNT electrodes can be leveraged to reduce impedance and enhance biological interfaces for microelectrodes of subcellular size.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nl1013986DOI Listing

Publication Analysis

Top Keywords

randomly oriented
16
carbon nanotube
12
oriented cnts
12
cnt microelectrodes
8
chemical vapor
8
vapor deposition
8
myocytes randomly
8
vertically aligned
8
electrochemical properties
4
properties myocyte
4

Similar Publications

Lightweight flexible piezoelectric devices have garnered significant interest over the past few decades due to their applications as energy harvesters and wearable sensors. Among different piezoelectrically active polymers, poly(vinylidene fluoride) and its copolymers have attracted considerable attention for energy conversion due to their high flexibility, thermal stability, and biocompatibility. However, the orientation of polymer chains for self-poling under mild conditions is still a challenging task.

View Article and Find Full Text PDF

: Interprofessional education of medical and pharmacy students may improve competence-based university teaching. : We developed a joint bed-side teaching to improve patient-related competencies in identifying drug-related problems in hospitalized patients at a university cardiology department. Students were randomly allocated in mixed teams of medical and pharmacy students (1:3).

View Article and Find Full Text PDF

Fully guided system for position-predictable autotransplantation of teeth: A randomized clinical trial.

Int Endod J

January 2025

Department of Oral and Maxillofacial Surgery, Guangdong Engineering Research Center of Oral Restoration and Reconstruction Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China.

Aim: Autotransplantation of teeth (ATT) is a viable biological method for addressing dental defects. The objective was to achieve occlusal reconstruction-orientated ATT to enhance functionality and obtain optimal location and adjacency. This study proposes a new concept of a guide (a fully guided system) to achieve position-predictable ATT.

View Article and Find Full Text PDF

Surface Template Realizing Oriented Perovskites for Highly Efficient Solar Cells.

Adv Mater

January 2025

Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China.

Formamidinium lead iodide (FAPbI) perovskite films, ensuring optically active phase purity with uniform crystal orientation, are ideal for photovoltaic applications. However, the optically active α-FAPbI phase is easy to degrade into δ-phase due to numerous defects within randomly oriented films. Here, a "quasi-2D" perovskite template is pre-deposited on the film surface within the crystallization process based on the two-step preparation technology, which directly induced pure and highly orientated crystallization of α-FAPbI across the downward growth process.

View Article and Find Full Text PDF

Multifunctional polymer composites containing micro/nano hybrid reinforcements have attracted intensive attention in the field of materials science and engineering. This paper develops a multi-phase analytical model for investigating the effective electrical conductivity of micro-silicon carbide (SiC) whisker/nano-carbon black (CB) polymer composites. First, CB nanoparticles are dispersed within the non-conducting epoxy to achieve a conductive CB-filled nanocomposite and its electrical conductivity is predicted.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!