Hydrophilic interaction chromatography (HILIC) liquid chromatography/mass spectrometry (LC/MS) is appropriate for all native and reductively aminated glycan classes. HILIC carries the advantage that retention times vary predictably according to oligosaccharide composition. Chromatographic conditions are compatible with sensitive and reproducible glycomics analysis of large numbers of samples. The data are extremely useful for quantitative profiling of glycans expressed in biological tissues. With these analytical developments, the rate-limiting factor for widespread use of HILIC LC/MS in glycomics is the analysis of the data. In order to eliminate this problem, a Java-based open source software tool, Manatee, was developed for targeted analysis of HILIC LC/MS glycan datasets. This tool uses user-defined lists of compositions that specify the glycan chemical space in a given biological context. The program accepts high-resolution LC/MS data using the public mzXML format and is capable of processing a large data file in a few minutes on a standard desktop computer. The program allows mining of HILIC LC/MS data with an output compatible with multivariate statistical analysis. It is envisaged that the Manatee tool will complement more computationally intensive LC/MS processing tools based on deconvolution and deisotoping of LC/MS data. The capabilities of the tool were demonstrated using a set of HILIC LC/MS data on organ-specific heparan sulfates.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3254673 | PMC |
http://dx.doi.org/10.1007/s00216-010-4235-1 | DOI Listing |
J Sep Sci
January 2025
Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM) Chemistry, Biology and Innovation (CBI), UMR CNRS-ESPCI Paris 8231, ESPCI Paris, PSL University, CNRS, Paris, France.
Adduction on protein nucleophile sites by mustard agents can be monitored to assess detection of retrospective exposure to these agents. Cysteine 34 (Cys34) on human serum albumin was selected as the target of choice. This work targets di- and tripeptides adducted on Cys34 by sulfur mustard, sesquimustard, and nitrogen mustards separated in hydrophilic liquid chromatography (HILIC) and Reversed-Phase (RP) mode.
View Article and Find Full Text PDFJ Chromatogr A
December 2024
Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy; LASIRE, University of Lille, Cité Scientifique, Villeneuve-d'Ascq, 59650, France.
The aim of this study was to optimize a Liquid Chromatography Mass Spectrometry (LC-MS) method using a zwitterionic phosphorylcholine HILIC column for the determination of several Persistent and Mobile Organic Contaminants (PMOC) in wastewater samples. An experimental design approach was implemented to both better understand the retention mechanisms of several polar compounds and to find the optimal operating conditions for their detection and quantification. Eleven PMOCs, with logD ranging from -5.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China; College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China; Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linli 276000, China; Ningbo Research Institute, Zhejiang University, Hangzhou 315100, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China.
J Chromatogr A
January 2025
Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands. Electronic address:
ACS Cent Sci
November 2024
Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
Although immunoglobulin G (IgG) harbors just one -glycosylation site per heavy chain, this glycosylation plays a key role in modulating its function. In human serum, IgG is classified into four subclasses (IgG1, IgG2, IgG3, IgG4), each characterized by unique features in their sequences, disulfide bridges and glycosylation signatures. While protein glycosylation is typically studied at the compositional level, this severely underestimates the complexity of the molecules involved.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!