Spatial distribution and abundances of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in mangrove sediments.

Appl Microbiol Biotechnol

School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, People's Republic of China.

Published: February 2011

We investigated the diversity, spatial distribution, and abundances of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in sediment samples of different depths collected from a transect with different distances to mangrove forest in the territories of Hong Kong. Both the archaeal and bacterial amoA genes (encoding ammonia monooxygenase subunit A) from all samples supported distinct phylogenetic groups, indicating the presences of niche-specific AOA and AOB in mangrove sediments. The higher AOB abundances than AOA in mangrove sediments, especially in the vicinity of the mangrove trees, might indicate the more important role of AOB on nitrification. The spatial distribution showed that AOA had higher diversity and abundance in the surface layer sediments near the mangrove trees (0 and 10 m) but lower away from the mangrove trees (1,000 m), and communities of AOA could be clustered into surface and bottom sediment layer groups. In contrast, AOB showed a reverse distributed pattern, and its communities were grouped by the distances between sites and mangrove trees, indicating mangrove trees might have different influences on AOA and AOB community structures. Furthermore, the strong correlations among archaeal and bacterial amoA gene abundances and their ratio with NH (4) (+) , salinity, and pH of sediments indicated that these environmental factors have strong influences on AOA and AOB distributions in mangrove sediments. In addition, AOA diversity and abundances were significantly correlated with hzo gene abundances, which encodes the key enzyme for transformation of hydrazine into N(2) in anaerobic ammonium-oxidizing (anammox) bacteria, indicating AOA and anammox bacteria may interact with each other or they are influenced by the same controlling factors, such as NH (4) (+) . The results provide a better understanding on using mangrove wetlands as biological treatment systems for removal of nutrients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3035804PMC
http://dx.doi.org/10.1007/s00253-010-2929-0DOI Listing

Publication Analysis

Top Keywords

mangrove trees
20
mangrove sediments
16
spatial distribution
12
aoa aob
12
mangrove
11
aoa
10
distribution abundances
8
abundances ammonia-oxidizing
8
ammonia-oxidizing archaea
8
archaea aoa
8

Similar Publications

On the African continent, Picrodendraceae are represented by four genera. Their intracontinental paleophytogeographic histories and paleoecological aspects are obscured by the lack of pre-Miocene fossils. For this study, late Eocene sediments from Kenya were investigated.

View Article and Find Full Text PDF

Blueprinting the ecosystem health index for blue carbon ecotones.

iScience

December 2024

Center for Ecosystem Design and fuTuRE EcoSystems Lab (TREES), Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.

Blue carbon ecotones (BCEs) play a critical role in regulating abiotic and biotic ecological fluxes underpinning services which are also crucial for the protection of the land-ocean function. Here, we proposed a Benefit-Pressure-Transformation Risk model (BPT) to calculate the Ecosystem Health Index (EHI) for mangrove, salt marsh, and seagrass as core BCEs globally (at a resolution of 1° × 1 °lat-long), based on habitat structure, species morphological features and vulnerability, niche overlap, nature and human pressures, and ecosystem services. Our assessments identify that around 20% of BCEs as vulnerable globally.

View Article and Find Full Text PDF

Effects of wood density on mechanical properties of mangrove wood from the Amazon coast.

PLoS One

November 2024

Laboratório de Ecologia de Manguezal (LAMA), Instituto de Estudos Costeiros (IECOS), Universidade Federal do Pará (UFPA), Bragança, Pará, Brazil.

Mangrove forests are essential on the Amazon coast, as local communities widely use their wood. However, it is still necessary to understand the mechanical properties of wood typical of mangroves. Our main objective was to understand the influence of density on mechanical properties.

View Article and Find Full Text PDF

A Trade-Off Between Leaf Carbon Economics and Plant Size Among Mangrove Species in Dongzhaigang, China.

Ecol Evol

November 2024

Guangdong Provincial Key Laboratory of Applied Botany, and Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden Chinese Academy of Sciences Guangzhou China.

Plant size is closely linked to its leaf trait characteristics, which are essential for determining its form and function. These relationships constitute a fundamental component of the global spectrum of plant diversity. Despite this, the size-trait relationships in coastal mangroves have often been overlooked, with a common assumption that they would mirror those found in terrestrial tropical trees.

View Article and Find Full Text PDF

Early to intermediate ontogenetic stages of trees are important in forest regeneration. However, these critical life stages are often overlooked due to survey intensity and impracticality and/or disinterest in characterizing early life stage cohorts. This problem is particularly pervasive in mangrove forests where visibility of smaller stature trees may be limited by tidal flooding and younger cohorts are particularly vulnerable to changing hydrologic and biogeochemical conditions driven by climate change.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!