Herein, we introduce the concept of utilizing conductive gold-coated magnetic nanoparticles as 'dispersible electrodes', which serve as the active element in the selective capture and direct electro-analytical quantification of analytes. This concept reduces response times and decreases detection limits by bringing the sensor to the analyte rather than the conventional paradigm of the analyte finding the sensor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c0cc02690e | DOI Listing |
Heliyon
January 2025
Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
In this study, a Cu@Ag core-shell was synthesized using a co-precipitation method. To create a new electrochemical sensor, a Cu@Ag core-shell with conductive polymers such as polyalizarin yellow R (PA) and Nafion (Nf) was immobilized on the surface of a glassy carbon electrode (Cu@Ag-Nf/PA/GCE). X-ray diffraction analysis (XRD), energy dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), and Fourier Transform Infrared Spectroscopy (FTIR) techniques were employed to characterize the Cu@Ag-Nf/PA/GCE.
View Article and Find Full Text PDFRev Sci Instrum
January 2025
High Enthalpy Flow Diagnostics Group (HEFDiG), Institute of Space Systems, University of Stuttgart, Pfaffenwaldring 29, 70569 Stuttgart, Germany.
A novel solid electrolyte sensor with considerably improved response times is presented. The new so-called eFIPEX [etched flux (Φ) probe experiment] is based on the FIPEX [flux (Φ) probe experiment] sensor applied for the measurement of molecular and atomic oxygen concentrations. A main application is the measurement of atmospheric atomic oxygen aboard sounding rockets up to altitudes of 250 km.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China.
Polymer electrolytes incorporated with fillers possess immense potential for constructing the fast and selective Li conduction. However, the inhomogeneous distribution of the fillers usually deteriorates the microdomain consistency of the electrolytes, resulting in uneven Li flux, and unstable electrode-electrolyte interfaces. Herein, we formulate a solution-process chemistry to in situ construct gel polymer electrolytes (GPEs) with well-dispersed metal-organic frameworks (MOFs), leading to a uniform microdomain structure.
View Article and Find Full Text PDFBMC Chem
January 2025
National Organization for Drug Control and Research (NODCAR), P.O.Box 29, Cairo, Egypt.
Tirofiban hydrochloride is used to inhibit platelet aggregation, which has a significant impact on the treatment of congestive heart failure the most common cause of death according to WHO. Therefore, its quantification in pharmaceutical dosage form is critical. In this work, an electrochemical method for the determination of tirofiban HCl in pharmaceutical dosage form was developed and validated.
View Article and Find Full Text PDFChemphyschem
January 2025
Stony Brook University, Chemistry, Department of Chemistry, Stony Brook University, 11794, Stony Brook, UNITED STATES OF AMERICA.
For batteries to function effectively all active material must be accessible requiring both electron and ion transport to each particle. A common approach to generating the needed conductive network is the addition of carbon. An alternative approach is the electrochemically induced formation of conductive reaction products generated with intimate contact to the active material.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!