The bulk mechanical properties of soft materials have been studied widely, but it is unclear to what extent macroscopic behavior is reflected in nanomechanics. Using an atomic force microscopy (AFM) imaging method called force spectroscopy mapping (FSM), it is possible to map the nanoscopic spatial distribution of Young's modulus, i.e. "stiffness," and determine if soft or stiff polymer domains exist to correlate nano- and macro-mechanics. Two model hydrogel systems typically used in cell culture and polymerized by a free radical polymerization process, i.e. poly (vinyl pyrrolidone) (PVP) and poly(acrylamide) (PAam) hydrogels, were found to have significantly different nanomechanical behavior despite relatively similar bulk stiffness and roughness. PVP gels contained a large number of soft and stiff nanodomains, and their size was inversely related to crosslinking density and changes in crosslinking efficiency within the hydrogel. In contrast, PAam gels displayed small nanodomains occuring at low frequency, indicating relatively uniform polymerization. Given the responsiveness of cells to changes in gel stiffness, inhomogeneities found in the PVP network indicate that careful nanomechanical characterization of polymer substrates is necessary to appreciate complex cell behavior.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2954611 | PMC |
http://dx.doi.org/10.1039/C0SM00339E | DOI Listing |
Nat Commun
January 2025
Morphing Matter Lab, Human-Computer Interaction Institute, Carnegie Mellon University, Pittsburgh, PA, USA.
Compliant mechanisms with reconfigurable degrees of freedom are gaining attention in the development of kinesthetic haptic devices, robotic systems, and mechanical metamaterials. However, available devices exhibit limited programmability and form-customizability, restricting their versatility. To address this gap, we propose a metastructure concept featuring reconfigurable motional freedom and tunable stiffness, adaptable to various form factors and applications.
View Article and Find Full Text PDFSci Data
January 2025
University of Delaware, Department of Mechanical Engineering, Newark, DE, 19716, USA.
Walking on compliant terrains, like carpets, grass, and soil, presents a unique challenge, especially for individuals with mobility impairments. In contrast to rigid-ground walking, compliant surfaces alter movement dynamics and increase the risk of falls. Understanding and modeling gait control across such soft and deformable surfaces is thus crucial for maintaining daily mobility.
View Article and Find Full Text PDFSoft Robot
January 2025
i-lab, Nano-X Vacuum Interconnected Workstation, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech & Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, P. R. China.
Soft magnetic robots have attracted extensive research interest recently due to their fast-transforming ability and programmability. Although the inherent softness of the matrix materials enables dexterity and safe interactions, the contradiction between the easy shape transformation of the soft matrices and load carrying capacity, as well as the difficulty of independently controllable motion of individual segments, severely limits its design space and application potentials. Herein, we have proposed a strategy to adjust the modulus of shape memory polymer composite embedded with hard magnetic particles by Joule heating of printed circuit, which can reversibly change the stiffness from 4.
View Article and Find Full Text PDFWearable Technol
December 2024
Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA.
This work studies upper-limb impairment resulting from stroke or traumatic brain injury and presents a simple technological solution for a subset of patients: a soft, active stretching aid for at-home use. To better understand the issues associated with existing associated rehabilitation devices, customer discovery conversations were conducted with 153 people in the healthcare ecosystem (60 patients, 30 caregivers, and 63 medical providers). These patients fell into two populations: spastic (stiff, clenched hands) and flaccid (limp hands).
View Article and Find Full Text PDFCureus
December 2024
Clinical Research and Medical Writing, Meril Life Sciences Private Limited, Vapi, IND.
Aim The primary objective of the study was to evaluate the mid-term implant survivability, rate of revisions, and clinical and functional outcomes following patella resurfacing during total knee arthroplasty (TKA) utilizing posterior stabilized (PS) total knee system (TKS). Methods A prospective, single-arm, multi-center, post-marketing surveillance encompassed patients with end-stage primary knee osteoarthritis (OA) or inflammatory arthritis. The time points of the study included baseline, six weeks, six months, one year, and three years post-operatively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!