Role of bottom-fermenting brewer's yeast KEX2 in high temperature resistance and poor proliferation at low temperatures.

J Gen Appl Microbiol

Research Laboratories of Brewing Technology, Asahi Breweries, LTD., Moriya, Ibaraki, Japan.

Published: August 2010

Variants of bottom-fermenting brewer's yeast that grew at high temperatures and showed poor proliferation and fermentation at low temperatures were isolated. Similar variants of laboratory yeast were also isolated and found to be incapable of mating. The KEX2 gene was cloned by complementation. It was shown to be responsible for these traits, because a KEX2 disruptant of Saccharomyces cerevisiae (S. cerevisiae) laboratory yeast grew poorly at low temperatures and was resistant to high temperatures. In addition, a Saccharomyces bayanus (S. bayanus)-type KEX2 (Sb-KEX2) disruptant of bottom-fermenting brewer's yeast grew poorly at low temperatures and was resistant to high temperatures. The KEX2 gene product plays an important role in proliferation of yeast at low temperatures, which is an important trait of bottom-fermenting brewer's yeast. These findings advance our understanding of the proliferation of yeast at low temperatures, especially that of bottom-fermenting brewer's yeast.

Download full-text PDF

Source
http://dx.doi.org/10.2323/jgam.56.297DOI Listing

Publication Analysis

Top Keywords

low temperatures
24
bottom-fermenting brewer's
20
brewer's yeast
20
yeast grew
12
high temperatures
12
yeast
9
temperatures
9
poor proliferation
8
laboratory yeast
8
kex2 gene
8

Similar Publications

Heat stress poses a significant challenge for maize production, especially during the spring when high temperatures disrupt cellular processes, impeding plant growth and development. The B-cell lymphoma-2 (Bcl-2) associated athanogene (BAG) gene family is known to be relatively conserved across various species. It plays a crucial role as molecular chaperone cofactors that are responsible for programmed cell death and tumorigenesis.

View Article and Find Full Text PDF

Outer mitochondrial membrane (OMM) proteins communicate with the cytosol and other organelles, including the endoplasmic reticulum. This communication is important in thermogenic adipocytes to increase the energy expenditure that controls body temperature and weight. However, the regulatory mechanisms of OMM protein insertion are poorly understood.

View Article and Find Full Text PDF

Sustainable pavement is essential for country development, offering durable, environmentally friendly, and cost-effective infrastructure. For Malaysia, sustainable pavement supports Sustainable Development Goals (SDGs) 9 and 11 while addressing road deterioration caused by increasing traffic volumes and loads. This deterioration shortens pavement service life and necessitates frequent maintenance, driving the need for innovative solutions.

View Article and Find Full Text PDF

This work examines the effects of Nb and Nb-B additives on the high-temperature flow behavior and mechanical properties of low-carbon steel. The base, 0.015% Nb-bearing (15Nb alloy), and 0.

View Article and Find Full Text PDF

Transition from multi-year La Niña to strong El Niño rare but increased under global warming.

Sci Bull (Beijing)

December 2024

NOAA/Pacific Marine Environmental Laboratory, Seattle, Washington DC 20005, USA.

El Niño-Southern Oscillation (ENSO) exhibits a strong asymmetry between warm El Niño and cold La Niña in amplitude and temporal evolution. An El Niño often leads to a heat discharge in the equatorial Pacific conducive to its rapid termination and transition to a La Niña, whereas a La Niña persists and recharges the equatorial Pacific for consecutive years preconditioning development of a subsequent El Niño, as occurred in 2020-2023. Whether the multiyear-long heat recharge increases the likelihood of a transition to a strong El Niño remains unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!