O-linked-β-N-acetylglucosamine (O-GlcNAc) modification is a regulatory, nuclear and cytoplasmic post-translational glycosylation of proteins associated with age-related diseases such as Alzheimer's, Parkinson's, and type II diabetes. Global elevation of O-GlcNAc levels on intracellular proteins can induce insulin resistance, the hallmark of type II diabetes, in mammalian systems. InC. elegans, attenuation of the insulin-like signal transduction pathway increases adult lifespan of the nematode. We demonstrate that the O-GlcNAc cycling enzymes OGT and OGA, which add and remove O-GlcNAc respectively, modulate lifespan in C. elegans. Median adult lifespan is increased in an oga-1 deletion strain while median adult life span is decreased upon ogt-1 deletion. The O-GlcNAc-mediated effect on nematode lifespan is dependent on the FoxO transcription factor DAF-16. DAF-16 is a key factor in the insulin-like signal transduction pathway to regulate reproductive development, lifespan, stress tolerance, and dauer formation in C. elegans. Our data indicates that O-GlcNAc cycling selectively influences only a subset of DAF-16 mediated phenotypes, including lifespan and oxidative stress resistance. We performed an affinity purification of O-GlcNAc-modified proteins and observed that a high percentage of these proteins are regulated by insulin signaling and/or impact insulin pathway functional outcomes, suggesting that the O-GlcNAc modification may control downstream effectors to modulate insulin pathway mediated cellular processes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2993798 | PMC |
http://dx.doi.org/10.18632/aging.100208 | DOI Listing |
Am J Physiol Cell Physiol
January 2025
Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro.
O-GlcNAcylation is a post-translational modification characterized by the covalent attachment of a single moiety of GlcNAc on serine/threonine residues in proteins. Tyrosine hydroxylase (TH), the rate-limiting step enzyme in the catecholamine synthesis pathway and responsible for production of the dopamine precursor, L-DOPA, has its activity regulated by phosphorylation. Here, we show an inverse feedback mechanism between O-GlcNAcylation and phosphorylation of TH at serine 40 (TH pSer40).
View Article and Find Full Text PDFCell Commun Signal
January 2025
Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, P. R. China.
Fat mass and obesity-associated protein (FTO) was the first m6A demethylase identified, which is responsible for eliminating m6A modifications in target RNAs. While it is well-established that numerous cytosolic and nuclear proteins undergo O-GlcNAcylation, the possibility of FTO being O-GlcNAcylated and its functional implications remain unclear. This study found that a negative correlation between FTO expression and O-GlcNAcylation in patients with myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML).
View Article and Find Full Text PDFCarbohydr Res
March 2025
Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, 466-8550, Japan; Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya, Aichi, 464-8601, Japan. Electronic address:
Extracellular O-GlcNAc is a unique post-translational modification that occurs in the epidermal growth factor-like (EGF) domain of the endoplasmic reticulum (ER) lumen. The EGF domain-specific O-GlcNAc transferase (EOGT), catalyzes the transfer of O-GlcNAc to serine/threonine residues of the C-terminal EGF domain. Thus, EOGT-dependent O-GlcNAc modifications are mainly found in selective proteins that are localized in the extracellular spaces or extracellular regions of membrane proteins.
View Article and Find Full Text PDFJ Cell Physiol
January 2025
Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
Our previous study revealed a link between O-GlcNAc transferase (OGT) localization and protein phosphatase 2A (PP2A) activity in osteoblast. Given the association of PP2A downregulation with osteoblast differentiation, we hypothesized that OGT localization changes during this process. We examined OGT localization in MC3T3-E1 cells undergoing differentiation under normal and high glucose conditions.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independenței Str., 050095 Bucharest, Romania.
Glycosylation is a critical post-translational modification that influences protein folding, stability and function. While extensively studied in extracellular and intracellular regions, glycosylation within transmembrane (TM) regions and at membrane interfaces remains poorly understood. This study aimed to map O- and N-glycosylation sites in these regions using a comprehensive database search and structural validation where possible.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!