Background, Materials And Methods: Synthetic triazoles are widely used for the treatment of fungal infection. In order to understand their possible anti-inflammatory action, we investigated the effect of itraconazole and its hydroxylated derivative (hydroxyitraconazole) on the production of various pro-inflammatory substances by mouse macrophage-like RAW264.7 cells.
Results: These compounds did not apparently show any growth inhibitory or stimulatory effects over a wide range of concentrations (0.2-50 μg/ml). Itraconazoles dose-dependently increased the production of prostaglandin E₂ (PGE₂) and tumor necrosis factor-α (TNF-α) without affecting the production of interleukin-1β (IL-1β) and nitric oxide (NO). LPS treatment significantly enhanced the production of NO, PGE₂, TNF-α and IL-1β. The addition of itraconazoles to LPS-stimulated RAW264.7 cells significantly reduced the production of NO, but rather enhanced the production of PGE₂, TNF-α and IL-1β. ESR spectroscopy demonstrated that itraconazoles did not significantly scavenge NO and superoxide anion radicals, indicating that the inhibition of NO production by itraconazoles is not due to their radical-scavenging activity. Hydroxyitraconazole was slightly more cytostatic, and more efficiently inhibited NO production, but enhanced the production of other pro-inflammatory substances.
Conclusion: These data suggest that itraconazoles regulate NO and other pro-inflammatory substances differently in activated macrophages.
Download full-text PDF |
Source |
---|
Cells
January 2025
Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.
Sandhoff disease (SD) is a progressive neurodegenerative lysosomal storage disorder characterized by GM2 ganglioside accumulation as a result of mutations in the gene, which encodes the β-subunit of the enzyme β-hexosaminidase. Lysosomal storage of GM2 triggers inflammation in the CNS and periphery. The NLRP3 inflammasome is an important coordinator of pro-inflammatory responses, and we have investigated its regulation in murine SD.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
2nd Ward of Oncology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China. Electronic address:
Itaconate is a small-molecule metabolite generated by the enzyme aconitate decarboxylase 1 (ACOD1), which is upregulated during inflammation. Traditionally, itaconate has been recognized for its anti-inflammatory properties; however, this study reveals a pro-inflammatory mechanism of itaconate in macrophages. We demonstrate that itaconate promotes the proteasomal degradation of glyoxalase 1 (GLO1) via Cys139.
View Article and Find Full Text PDFBackground: Oxylipins are oxygenated fatty acid (FA) metabolites that are important mediators of inflammation. Neuroinflammation is a hallmark of Alzheimer's disease (AD), and brains of AD patients contain more pro-inflammatory and less anti-inflammatory oxylipins compared to healthy controls. Free fatty acid receptor 4 (Ffar4) is a G-protein coupled receptor for medium and long-chain FAs, including, but not limited to, omega-3-polyunsaturated FAs.
View Article and Find Full Text PDFMol Pharm
January 2025
Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
Developing low-toxicity, high-efficacy, and fast-acting strategies to manage acute liver injury (ALI) is critical due to its rapid progression and potential for severe outcomes. Curcumin (CUR) has shown promise in ALI therapy due to its ability to modulate the inflammatory microenvironment by scavenging reactive oxygen species (ROS). Nevertheless, CUR is highly hydrophobic limiting its bioavailability and effective in vivo transport, which hinders its further application.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Shoolini University, Solan, Himachal Pradesh, India.
Background: Alzheimer's disease (AD) is a complex neurodegenerative disorder characterized by progressive cognitive decline, neuroinflammation, and mitochondrial dysfunction. In Alzheimer's, abnormal Mitochondrial Permeability Transition Pore (mPTP) activity may contribute to mitochondrial dysfunction and neuronal damage. Withanolide A, a naturally occurring compound derived from Withania somnifera, have shown potential neuroprotective effects in various neurological disorders.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!