Vagal activity is thought to influence atrial electrophysiological properties and play a role in the initiation and maintenance of atrial fibrillation (AF). We evaluated the effects of acute vagal stimulation on atrial conduction, refractoriness of atrial and pulmonary veins (PVs) and inducibility of AF. An open-chest epicardial approach was performed in New Zealand White rabbits with preserved autonomic innervation. Atrial electrograms were obtained with four unipolar electrodes placed epicardially along the atria (n = 22) and an electrode adapted to the proximal left PV (n = 10). The cervical vagus nerve was stimulated with bipolar platinum electrodes (20 Hz). Epicardial activation was recorded in sinus rhythm, and effective refractory periods (ERPs), dispersion of refractoriness and conduction times from high-lateral right atrium (RA) to high-lateral left atrium (LA) and PVs assessed at baseline and during vagal stimulation. Burst pacing (50 Hz, 10 s), alone or combined with vagal stimulation, was applied to the right (RAA) and left atrial appendage (LAA) and PVs to induce AF. At baseline, ERPs were lower in PVs than in LA and LAA, but did not differ significantly from RA and RAA, and there was a significant delay in the conduction time from RA to PVs compared with the activation time from RA to LA (P < 0.01). During vagal stimulation, ERP decreased significantly at all sites, without significant differences in the dispersion of refractoriness, and the atrial conduction times changed from 39 ± 19 to 49 ± 9 ms (RA to PVs; n.s.) and from 14 ± 7 to 28 ± 12 ms (RA to LA; P = 0.01). Induction of AF was reproducible in 50% of cases with 50 Hz and in 82% with 50 Hz combined with vagal stimulation (P < 0.05). During vagal stimulation, AF cycle length decreased at all sites, and AF duration changed from 1.0 ± 0.9 to 14.0 ± 10.0 s (P < 0.01), with documentation of PV tachycardia in three cases. In 70% of the animals, AF ceased immediately after interruption of vagal stimulation. We conclude that in the intact rabbit heart, vagal activity prolongs interatrial conduction and shortens atrial and PV ERP, contributing to the vulnerability to the induction and maintenance of AF. This model may be useful in the assessment of the autonomic influence in the mechanisms underlying AF.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1113/expphysiol.2010.053280 | DOI Listing |
Curr Pain Headache Rep
January 2025
Department of Neurology - Headache Division, University of Miami Health, University of Miami School of Medicine, 1120 NW 14th Street, 13th Floor, Miami, FL, 33136, USA.
Purpose Of Review: Management of primary headache disorders during pregnancy is limited due to known teratogenicity or unknown safety of many currently available pharmaceutical therapies. Here, we explore the safety and efficacy of non-invasive neuromodulatory devices as another treatment modality for pregnant patients.
Recent Findings: There are six FDA-cleared, non-invasive neuromodulatory devices currently available for the management of headache that include remote electrical neuromodulation (REN), noninvasive vagal nerve stimulation (nVNS), external trigeminal nerve stimulation (eTNS), single-pulse transcranial magnetic stimulation (sTMS), and external concurrent occipital and trigeminal neurostimulation (eCOT-NS).
Asian J Endosc Surg
January 2025
Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
An aberrant right subclavian artery (ARSA) is a rare vascular anomaly accompanied by nonrecurrent inferior laryngeal nerve (NRILN). Here, we described the cervical-first approach in thoracoscopic esophagectomy for an esophageal cancer patient with ARSA using the intraoperative nerve monitoring (IONM) system. First, a left cervical procedure proceeded to expose the left vagus nerve to attach the APS electrode of the IONM system, and the left cervical paraesophageal lymph nodes was dissected separately.
View Article and Find Full Text PDFScand J Pain
January 2024
Crean College of Health and Behavioral Sciences, Department of Physical Therapy, Chapman University, Irvine, United States.
Objectives: Autonomic regulation has been identified as a potential regulator of pain via vagal nerve mediation, assessed through heart rate variability (HRV). Non-invasive vagal nerve stimulation (nVNS) and heart rate variability biofeedback (HRVB) have been proposed to modulate pain. A limited number of studies compare nVNS and HRVB in persons with chronic pain conditions.
View Article and Find Full Text PDFNat Rev Cardiol
January 2025
Institute for Pathophysiology, West German Heart and Vascular Center, University of Duisburg-Essen, Essen, Germany.
Exp Neurol
December 2024
Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA; Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA, USA. Electronic address:
Despite substantial advances in the acute management of stroke, it remains a leading cause of adult disability and mortality worldwide. Currently, the reperfusion modalities thrombolysis and thrombectomy benefit only a fraction of patients in the hyperacute phase of ischemic stroke. Thus, with the exception of vagal nerve stimulation combined with intensive physical therapy, there are no approved neuroprotective/neurorestorative therapies for stroke survivors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!