Protein folding is a natural phenomenon by which a sequence of amino acids folds into a unique functional three-dimensional structure. Although the sequence code that governs folding remains a mystery, one can identify key inter-residue contacts responsible for a given topology. In nature, there are many pairs of proteins of a given length that share little or no sequence identity. Similarly, there are many proteins that share a common topology but lack significant evidence of homology. In order to tackle this problem, protein engineering studies have been used to determine the minimal number of amino acid residues that codes for a particular fold. In recent years, the coupling of theoretical models and experiments in the study of protein folding has resulted in providing some fruitful clues. He et al. have designed two proteins with 88% sequence identity, which adopt different folds and functions. In this work, we have systematically analysed these two proteins by performing pentapeptide search, secondary structure predictions, variation in inter-residue interactions and residue-residue pair preferences, surrounding hydrophobicity computations, conformational switching and energy computations. We conclude that the local secondary structural preference of the two designed proteins at the Nand C-terminal ends to adopt either coil or strand conformation may be a crucial factor in adopting the different folds. Early on during the process of folding, both proteins may choose different energetically favourable pathways to attain the different folds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/protein/gzq070 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!