Promoter recognition by RNA polymerase is a key point in gene expression and a target of regulation. Bacterial RNA polymerase binds promoters in the form of the holoenzyme, with the σ specificity subunit being primarily responsible for promoter recognition. Free σ, however, does not recognize promoter DNA, and it has been proposed that the intrinsic DNA binding ability is masked in free σ but becomes unmasked in the holoenzyme. Here, we use a newly developed fluorescent assay to quantitatively study the interactions of free σ(70) from Escherichia coli, the β'-σ complex, and the σ(70) RNA polymerase (RNAP) holoenzyme with non-template strand of the open promoter complex transcription bubble in the context of model non-template oligonucleotides and fork junction templates. We show that σ(70), free or in the context of the holoenzyme, recognizes the -10 promoter element with the same efficiency and specificity. The result implies that there is no need to invoke a conformational change in σ for recognition of the -10 element in the single-stranded form. In the holoenzyme, weak but specific interactions of σ are increased by contacts with DNA downstream of the -10 element. We further show that region 1 of σ(70) is required for stronger interaction with non-template oligonucleotides in the holoenzyme but not in free σ. Finally, we show that binding of the β' RNAP subunit is sufficient to allow specific recognition of the TG motif of the extended -10 promoter element by σ(70). The new fluorescent assay, which we call a protein beacon assay, will be instrumental in quantitative dissection of fine details of RNAP interactions with promoters.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3012984 | PMC |
http://dx.doi.org/10.1074/jbc.M110.174102 | DOI Listing |
J Cell Mol Med
January 2025
Department of Spine, Orthopaedic Center, Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, China.
Osteogenic differentiation of bone marrow stem cells (BMSCs) is essential for bone tissue regeneration and repair. However, this process is often hindered by an unstable differentiation influenced by local microenvironmental factors. While small extracellular vesicles (sEVs) derived from osteogenically induced adipose mesenchymal stem cells (ADSCs) reportedly can promote osteogenic differentiation of BMSCs, the underlying molecular mechanisms remain incompletely understood.
View Article and Find Full Text PDFCancer Res
January 2025
University of Maryland, Baltimore, Baltimore, Maryland, United States.
DNA methyltransferase and poly (ADP-ribose) polymerase inhibitors (DNMTis, PARPis) induce a stimulator of interferon genes (STING)-dependent pathogen mimicry response (PMR) in ovarian and other cancers. Here, we showed that combining DNMTis and PARPis upregulates expression of the nucleic-acid sensor NFX1-type zinc finger-containing 1 protein (ZNFX1). ZNFX1 mediated induction of PMR in mitochondria, serving as a gateway for STING-dependent interferon/inflammasome signaling.
View Article and Find Full Text PDFDrug Des Devel Ther
January 2025
Department of Trauma Orthopedics, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272007, People's Republic of China.
Purpose: Osteosarcoma (OS) is the most common malignant tumor associated with poor patient outcomes and a limited availability of therapeutic agents. Scutellarein (SCU) is a monomeric flavone bioactive compound with potent anti-cancer activity. However, the effects and mechanisms of SCU on the growth of OS remain unknown.
View Article and Find Full Text PDFTranscription introduces torsional stress in the DNA fiber causing it to transition from a relaxed to a supercoiled state that can propagate across several kilobases and modulate the binding and activity of DNA-associated proteins. As a result, transcription at one locus has the potential to impact nearby transcription events. In this study, we asked how DNA supercoiling affects histone modifications and transcription of neighboring genes in the multicellular eukaryote .
View Article and Find Full Text PDFAnal Cell Pathol (Amst)
January 2025
Department of Urology, The First Hospital of Jilin University, Changchun, China.
This study aims to study how gold nanoparticles (AuNPs) function in the recruitment and polarization of tumor-associated macrophages (TAMs) in hormone-sensitive prostate cancer (HSPC) and castration-resistant prostate cancer (CRPC). Phorbol ester (PMA)-treated THP-1 cells were cocultured with LNCaP or PC3 cells to simulate TAMs. Macrophage M2 polarization levels were detected using flow cytometry and M2 marker determination.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!