We review recent observations on the mobility of macromolecules and their spatial organization in live bacterial cells. We outline the major fluorescence microscopy-based methods to determine the mobility and thus the diffusion coefficients (D) of molecules, which is not trivial in small cells. The extremely high macromolecule crowding of prokaryotes is used to rationalize the reported lower diffusion coefficients as compared to eukaryotes, and we speculate on the nature of the barriers for diffusion observed for proteins (and mRNAs) in vivo. Building on in vitro experiments and modeling studies, we evaluate the size dependence of diffusion coefficients for macromolecules in vivo, in case of both water-soluble and integral membrane proteins. We comment on the possibilities of anomalous diffusion and provide examples where the macromolecule mobility may be limiting biological processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.copbio.2010.09.009 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!