The impact of redox and thiol status on the bone marrow: Pharmacological intervention strategies.

Pharmacol Ther

Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA.

Published: February 2011

Imbalances in cancer cell redox homeostasis provide a platform for new opportunities in the development of anticancer drugs. The control of severe dose-limiting toxicities associated with redox regulation, including myelosuppression and immunosuppression, remains a challenge. Recent evidence implicates a critical role for redox regulation and thiol balance in pathways that control myeloproliferation, hematopoietic progenitor cell mobilization, and immune response. Hematopoietic stem cell (HSC) self-renewal and differentiation are dependent upon levels of intracellular reactive oxygen species (ROS) and niche microenvironments. Redox status and the equilibrium of free thiol:disulfide couples are important in modulating immune response and lymphocyte activation, proliferation and differentiation. This subject matter is the focus of the present review. The potential of redox modulating chemotherapeutics as myeloproliferative and immunomodulatory agents is also covered.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3026067PMC
http://dx.doi.org/10.1016/j.pharmthera.2010.09.008DOI Listing

Publication Analysis

Top Keywords

redox regulation
8
immune response
8
redox
5
impact redox
4
redox thiol
4
thiol status
4
status bone
4
bone marrow
4
marrow pharmacological
4
pharmacological intervention
4

Similar Publications

As global change threatens avian biodiversity, understanding species responses to environmental perturbations due to radiation emitted by enormous increase in the application of wireless communication is very urgent. The study investigates the effect of MW radiation on redox balance, stress level, male fertility and the efficacy of Withania somnifera (WS) root extract (100 mg/kg body weight) orally administered in 8 weeks old mature male Japanese quail exposed to 2.4 GHz MW radiation for 2 h/day for 30 days with power density = 0.

View Article and Find Full Text PDF

Mitochondrial metabolism requires the chaperoned import of disulfide-stabilized proteins via CHCHD4/MIA40 and its enigmatic interaction with oxidoreductase Apoptosis-inducing factor (AIF). By crystallizing human CHCHD4's AIF-interaction domain with an activated AIF dimer, we uncover how NADH allosterically configures AIF to anchor CHCHD4's β-hairpin and histidine-helix motifs to the inner mitochondrial membrane. The structure further reveals a similarity between the AIF-interaction domain and recognition sequences of CHCHD4 substrates.

View Article and Find Full Text PDF

Pathogenic variants of GDAP1 cause Charcot-Marie-Tooth disease (CMT), an inherited neuropathy characterized by axonal degeneration. GDAP1, an atypical glutathione S-transferase, localizes to the outer mitochondrial membrane (OMM), regulating this organelle's dynamics, transport, and membrane contact sites (MCSs). It has been proposed that GDAP1 functions as a cellular redox sensor.

View Article and Find Full Text PDF

Carbon dots (CDs) are promising candidates as oxygen photosensitizers, in cancer therapeutic applications due to their high quantum yield, superior chemical and photostability, low cytotoxicity and ease of chemical functionalization/tuning. Nitrogen doping can further improve oxygen photosensitization performance. Besides photodynamic therapy, however, the possibility to finely and remotely regulate the intracellular redox balance by using physical stimuli has been attracting more and more interest not only for nanotheranostic application, but also as a novel, fully biocompatible therapeutic tool.

View Article and Find Full Text PDF

Crystal-facet heterojunction engineering of mesoporous nanoreactors with highly redox-active represents an efficacious strategy for the transformation of CO2 into valuable C2 products (e.g., C2H4).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!