A commercial laccase from Trametes versicolor was conjugated with biopolymer chitosan using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) as the cross-linking agent. Laccase-chitosan conjugation strategies were tested using different molar ratios of glucosamine monomer/protein with different molar excess ratios of EDC relative to laccase. Immobilization techniques were developed to improve the stability against thermal and chemical denaturation, storage and reusability of this biocatalyst. The conjugation resulted in a solid biocatalyst with an apparent laccase activity of ±626 U/g, 12 and 60 folds higher in the conjugation efficiency of biocatalyst relative to the immobilized and free laccase activity respectively when compared with zero EDC/laccase ratio used in conjugation solution. The conjugated laccases formed successfully eliminated the emerging pollutant triclosan (TCS) from aqueous solutions, having a higher potential to transform TCS than free laccase. UPLC-QTOF results indicate the formation of TCS oligomers. Furthermore, they are the first evidence of direct dechlorination of TCS mediated by the oxidative action of laccases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2010.09.080 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!