Anti-NMDA-receptor encephalitis is a severe, treatable and potentially reversible disorder presenting with memory deficits, psychiatric symptoms and seizures. Initially described in young patients with ovarian teratoma, the disease is meanwhile increasingly recognized also in women without tumours, in men and in children. The presence of anti-glutamate receptor (type NMDA) autoantibodies in serum or cerebrospinal fluid is specific for this novel and widely underdiagnosed disorder. Early recognition is crucial since prognosis largely depends on adequate immunotherapy and, in paraneoplastic cases, complete tumour removal. Indirect immunofluorescence using NMDA-type glutamate receptors recombinantly expressed in human cells is a highly competent method for diagnosing anti-NMDA-receptor encephalitis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jneuroim.2010.09.012DOI Listing

Publication Analysis

Top Keywords

anti-nmda-receptor encephalitis
12
encephalitis severe
8
disorder presenting
8
severe multistage
4
multistage treatable
4
treatable disorder
4
presenting psychosis
4
psychosis anti-nmda-receptor
4
severe treatable
4
treatable reversible
4

Similar Publications

CSF Mitochondrial N-Formyl Methionine Peptide as Complementary Diagnostic Tool in Anti-NMDAR Encephalitis and Anti-LGI1 Encephalitis.

Neuropsychiatr Dis Treat

December 2024

Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangdong, 510180, People's Republic of China.

Background: Mitochondrial damage is significant in autoimmune diseases, with mitochondrial N-formyl methionine peptide (fMet) being released from damaged mitochondria. However, its potential as a marker for assessing the severity of two kinds of encephalitis - anti-N-methyl-D-aspartate receptor (anti-NMDAR) and anti-leucine-rich glioma-inactivated 1 (LGI1) - remains uncertain. We measured CSF fMet levels in anti-NMDAR encephalitis and anti-LG1 encephalitis patients, assessing its diagnostic and therapeutic potential.

View Article and Find Full Text PDF

Background/aim: Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis, though rare, is the most common form of autoimmune encephalitis, predominantly affecting young individuals, particularly females. Standard treatments include corticosteroids, intravenous immunoglobulins (IVIG), and plasmapheresis, with rituximab recommended for those unresponsive to first-line therapies. However, reliable biomarkers for clinical assessment remain elusive.

View Article and Find Full Text PDF

NMDA receptor mediated autoimmune encephalitis (NMDAR-AE) frequently results in persistent sensory-motor deficits, especially in children, yet the underlying mechanisms remain unclear. This study investigated the long- term effects of exposure to a patient-derived GluN1-specific monoclonal antibody (mAb) during a critical developmental period (from postnatal day 3 to day 12) in mice. We observed long-lasting sensory-motor deficits characteristic of NMDAR-AE, along with permanent changes in callosal axons within the primary somatosensory cortex (S1) in adulthood, including increased terminal branch complexity.

View Article and Find Full Text PDF

Introduction: Very rarely, adult NMDAR antibody-associated encephalitis (NMDAR-E) leads to persistent cerebellar atrophy and ataxia. Transient cerebellar ataxia is common in pediatric NMDAR-E. Immune-mediated cerebellar ataxia may be associated with myelin oligodendrocyte glycoprotein (MOG), aquaporin-4 (AQP-4), kelch-like family member 11 (KLHL11), and glutamate kainate receptor subunit 2 (GluK2) antibodies, all of which may co-occur in NMDAR-E.

View Article and Find Full Text PDF

Purpose: Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is an autoimmune reaction involving Immunoglobulin G antibodies against GluN1 subunit of NMDAR. Absence of biomarkers for early diagnosis and prognosis poses a challenge. Several small case-control studies have emphasized the prospect of quantitative EEG measurements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!