DT56a (Femarelle), contrary to estradiol-17β, is effective in human derived female osteoblasts in hyperglycemic condition.

J Steroid Biochem Mol Biol

Institute of Endocrinology, Metabolism and Hypertension, Tel-Aviv Sourasky Medical Center, 6 Weizman St., Tel-Aviv 64239, Israel.

Published: January 2011

We have reported previously, that female-derived cultured osteoblasts (hObs) responded to DT56a (Femarelle) measured by the stimulation of creatine kinase specific activity (CK), which is a marker for hormone responsiveness and (3)[H] thymidine incorporation into DNA (DNA synthesis). Since the skeletal protective effects of estrogens are not discernable in hyperglycemic diabetic women, we sought to analyze the effect of estrogenic compounds on CK and DNA synthesis in hObs when grown in high glucose concentration (HG). Cells were grown either in normal glucose (NG) (4.5g/L; 22mM) or HG (9.0g/L; 44mM) for 7 days. HG increased constitutive CK but, the response of CK activity and DNA synthesis to estradiol-17β (E(2)) treatment was reduced. In contrary, DT56a was found to be active (as measured by CK activity and DNA synthesis) in both NG and HG. HG decreases the hormonal responsiveness and might block important effects of estrogenic compounds, most likely contributing to their decreased skeletal preserving properties in hyperglycemic women. In hObs from post-menopausal women grown in HG, ERs mRNA expressions were unchanged. On the other hand, in hObs from pre-menopausal women HG increased ERs mRNA expressions. Since DT56a unlike E(2) is active in HG environment as well as in normal glucose, it may be an effective bone restoring agent in diabetic post-menopausal women.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jsbmb.2010.10.001DOI Listing

Publication Analysis

Top Keywords

dna synthesis
16
dt56a femarelle
8
estrogenic compounds
8
normal glucose
8
activity dna
8
dt56a active
8
post-menopausal women
8
ers mrna
8
mrna expressions
8
dna
5

Similar Publications

Background: Mesenchymal stem cells (MSCs) are promising candidates for regenerative therapy due to their self-renewal capability, multilineage differentiation potential, and immunomodulatory effects. The molecular characteristics of MSCs are influenced by their location. Recently, epidural fat (EF) and EF-derived MSCs (EF-MSCs) have garnered attention due to their potential benefits to the spinal microenvironment and their high expression of neural SC markers.

View Article and Find Full Text PDF

Novel D-Ribofuranosyl Tetrazoles: Synthesis, Characterization, In Vitro Antimicrobial Activity, and Computational Studies.

ACS Omega

January 2025

Applied Chemistry and Environment Laboratory, Applied Bioorganic Chemistry Team, Faculty of Science, Ibn Zohr University, Agadir 80000, Morocco.

The goal of this study was to synthesize and evaluate new antimicrobial compounds. We specifically focused on the development of 2,5-disubstituted tetrazole derivatives containing the O-methyl-2,3-O-isopropylidene-(D)-ribofuranoside groups through N-alkylation reactions. The synthesized compounds were characterized using H and C nuclear magnetic resonance (NMR) spectroscopy.

View Article and Find Full Text PDF

Numerous regulators of cardiomyocyte (CM) proliferation have been identified, yet how they coordinate during cardiac development or regeneration is poorly understood. Here, we developed a computational model of the CM proliferation regulatory network to obtain key regulators and systems-level understanding. The model defines five modules (DNA replication, mitosis, cytokinesis, growth factor, Hippo pathway) and integrates them into a network of 72 nodes and 88 reactions that correctly predicts 73 of 78 (93.

View Article and Find Full Text PDF

Epigenetic Threads of Neurodegeneration: TFAM's Intricate Role in Mitochondrial Transcription.

CNS Neurol Disord Drug Targets

January 2025

Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Mysuru 570015. JSS Academy of Higher Education and Research, Mysuru, Karnataka, India.

There is a myriad of activities that involve mitochondria that are crucial for maintaining cellular equilibrium and genetic stability. In the pathophysiology of neurodegenerative illnesses, mitochondrial transcription influences mitochondrial equilibrium, which in turn affects their biogenesis and integrity. Among the crucial proteins for keeping the genome in optimal repair is mitochondrial transcription factor A, more commonly termed TFAM.

View Article and Find Full Text PDF

Evaluation of the Role of PnuC Gene in Enhancing Nicotinamide Mononucleotide Synthesis.

Biotechnol Appl Biochem

January 2025

Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.

The PnuC gene plays a crucial role in the complex processes related to the absorption and synthesis of the nicotinamide mononucleotide (NMN) precursor. NMN, a nicotinamide adenine dinucleotide (NAD) precursor, is important for cellular energy metabolism, DNA repair, and antiaging. This study focuses on elucidating the precursor absorption mechanism and the specific function of the PnuC gene in encoding membrane transport proteins, as well as its impact on the regulation and dynamics of NMN within the cell.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!