Invadopodia are dynamic actin structures at the cell surface that degrade extracellular matrix and act as sites of signal transduction. The biogenesis of invadopodia, including the mechanisms regulating their formation, composition, and turnover is not entirely understood. Here, we demonstrate that antibody ligation of ADAM12, a transmembrane disintegrin and metalloprotease, resulted in the rapid accumulation of invadopodia with extracellular matrix-degrading capacity in epithelial cells expressing the αvβ3 integrin and active c-Src kinase. The induction of invadopodia clusters required an intact c-Src interaction site in the ADAM12 cytoplasmic domain, but was independent of the catalytic activity of ADAM12. Caveolin-1 and transmembrane protease MMP14/MT1-MMP were both present in the ADAM12-induced clusters of invadopodia, and cholesterol depletion prevented their formation, suggesting that lipid-raft microdomains are involved in the process. Importantly, our data demonstrate that ADAM12-mediated ectodomain shedding of epidermal growth factor receptor ligands can occur within these invadopodia. Such localized growth factor signalling offers an interesting novel biological concept highly relevant to the properties of carcinoma cells, which often show upregulated ADAM12 and β3 integrin expression, together with high levels of c-Src kinase activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.yexcr.2010.10.003 | DOI Listing |
J Immunol
October 2024
Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada.
Immune cells survey their microenvironment by forming dynamic cellular protrusions that enable chemotaxis, contacts with other cells, and phagocytosis. Podosomes are a unique type of protrusion structured by an adhesive ring of active integrins that surround an F-actin-rich core harboring degradative proteases. Although the features of podosomes, once-established, have been well defined, the steps that lead to podosome formation remain poorly understood by comparison.
View Article and Find Full Text PDFNat Cell Biol
December 2023
Actin and Membrane Dynamics Laboratory, Institut Curie-Research Center, CNRS UMR144, PSL Research University, Paris, France.
Invadosomes and caveolae are mechanosensitive structures that are implicated in metastasis. Here, we describe a unique juxtaposition of caveola clusters and matrix degradative invadosomes at contact sites between the plasma membrane of cancer cells and constricting fibrils both in 2D and 3D type I collagen matrix environments. Preferential association between caveolae and straight segments of the fibrils, and between invadosomes and bent segments of the fibrils, was observed along with matrix remodelling.
View Article and Find Full Text PDFCell Rep
August 2023
Department of Biology, Drexel University, 3245 Chestnut Street, Philadelphia, PA 19104, USA. Electronic address:
Invadopodia are extracellular matrix (ECM) degrading structures, which promote cancer cell invasion. The nucleus is increasingly viewed as a mechanosensory organelle that determines migratory strategies. However, how the nucleus crosstalks with invadopodia is little known.
View Article and Find Full Text PDFUnlabelled: Invadopodia are extracellular matrix (ECM) degrading structures, which promote cancer cell invasion. The nucleus is increasingly viewed as a mechanosensory organelle that determines migratory strategies. However, how the nucleus crosstalks with invadopodia is little known.
View Article and Find Full Text PDFActa Biomater
September 2023
Department of Bioengineering, School of Engineering, University of Tokyo, Tokyo, Japan; Department of Mechanical Engineering, School of Engineering, University of Tokyo, Tokyo, Japan. Electronic address:
In vivo bone remodeling is promoted by the balance between osteoclast and osteoblast activity. Conventional research on bone regeneration has mainly focused on increasing osteoblast activity, with limited studies on the effects of scaffold topography on cell differentiation. Here, we examined the effect of microgroove-patterned substrate with spacings ranging from 1 to 10 μm on the differentiation of rat bone marrow-derived osteoclast precursors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!