'Max Red Bartlett' is a red bud mutation of the yellow pear (Pyrus communis L.) cultivar 'Williams' (known as 'Bartlett' in North America). Anthocyanins are the most important pigments for red colour in fruits. Synthesis of anthocyanins is mediated by a number of well-characterized enzymes that include chalcone synthase (CHS), flavanone-3-hydroxylase (F3H), dihydroflavonol-4-reductase (DFR), anthocyanidin synthase (ANS), and UDP-glucose:flavonoid-3-O-glucosyltransferase (UFGT). Expression of the genes encoding these five enzymes was examined in pear fruit skin in order to elucidate the molecular mechanism for red coloration. In addition, the gene PcMYB10, encoding an R2R3 MYB transcription factor involved in anthocyanin biosynthetic pathway regulation, was isolated from both 'Williams' and 'Max Red Bartlett'. Analysis of the deduced amino acid sequence suggests that this gene is an ortholog of anthocyanin regulators known in other plant species. Its expression level was significantly higher in 'Max Red Bartlett' (red pear) compared with the original yellow variety 'Williams'. Although the map position of PcMYB10 corresponds to that of MdMYBa and MdMYB10, which control pigmentation of apple fruit skin, PcMYB10 is not directly responsible for red versus yellow colour in the two pear varieties, as the mutation underlying this difference maps to a different region of the pear genome.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2010.09.002 | DOI Listing |
J Exp Biol
January 2025
Ornis italica, Rome, Italy.
Rapid reduction of body size in populations responding to global warming suggests the involvement of temperature-dependent physiological adjustments during growth, such as mitochondrial alterations, in the efficiency of producing metabolic energy, a process that is poorly explored, especially in endotherms. Here, we examined the mitochondrial metabolism and proteomic profile of red blood cells in relation to body size and cellular energetics in nestling shearwaters (Calonectris diomedea) developing at different natural temperatures. We found that nestlings of warmer nests had lighter bodies and smaller beaks at fledging.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
Department of Physics, Liaoning University, Shenyang 110036, Liaoning, China. Electronic address:
To investigate the influence of the position and quantity of thiophene or acetylene groups on the photoelectric properties of dye-sensitized solar cells (DSSCs), density functional theory (DFT) were employed to simulate five zinc porphyrin dye molecules (T-3, T-3-D, T-3-A, T-3-AD, and T-3-ace). The optimized geometry indicated that T-3-ace possessed superior planar properties, attributed to incorporating the acetylene groups, facilitating the charge transfer process. The lower lowest unoccupied molecular orbital (LUMO) energy levels of T-3-ace and T-3-D suggested that introducing thiophene or acetylene groups on the donor side enhanced the electron absorption capability of the dyes.
View Article and Find Full Text PDFParasit Vectors
January 2025
Faculty of Information Technology, Mutah University, Mutah, Jordan.
Background: Amebiasis represents a significant global health concern. This is especially evident in developing countries, where infections are more common. The primary diagnostic method in laboratories involves the microscopy of stool samples.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Department of Chemistry, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh.
This work represents a systematic computational study of structural and optoelectronic properties of 24 phenylazo-2-naphthol derivatives using the DFT-B3LYP/6-31 + G(d,p) method. The positional isomers of azo compounds have been designed by introducing an azophenyl unit (with and without substituents) at three different (1-, 3-, and 4-) positions of 2-naphthols. This result shows that depending on the linking position of the azophenyl unit and substituents (NO and maleimide), the -azo, -azo, and hydrazo forms of our substituted azo derivatives possess distinguished UV-vis absorption and charge-transfer properties compared to unsubstituted Sudan I derivatives.
View Article and Find Full Text PDFAngiotensin II (Ang II) is the most active peptide hormone produced by the renin-angiotensin system (RAS). Genetic deletion of genes that ultimately restrict Ang II formation has been shown to result in marked anemia in mice. In this study, adult mice with a genetic deletion of the RAS precursor protein angiotensinogen (Agt-KO) were used.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!