Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The acquired long QT syndrome (aLQTS) is frequently associated with extrinsic and intrinsic risk factors including therapeutic agents that inadvertently inhibit the KCNH2 K(+) channel that underlies the repolarizing I(Kr) current in the heart. Previous reports demonstrated that K(+) channel regulator 1 (KCR1) diminishes KCNH2 drug sensitivity and may protect susceptible patients from developing aLQTS. Here, we describe a novel variant of KCR1 (E33D) isolated from a patient with ventricular fibrillation and significant QT prolongation. We recorded the KCNH2 current (I(KCNH2)) from CHO-K1 cells transfected with KCNH2 plus wild type (WT) or mutant KCR1 cDNA, using whole cell patch-clamp techniques and assessed the development of I(KCNH2) inhibition in response to well-characterized KCNH2 inhibitors. Unlike KCR1 WT, the E33D variant did not protect KCNH2 from the effects of class I antiarrhythmic drugs such as quinidine or class III antiarrhythmic drugs including dofetilide and sotalol. The remaining current of the KCNH2 WT+KCR1 E33D channel after 100 pulses in the presence of each drug was similar to that of KCNH2 alone. Simulated conditions of hypokalemia (1mM [K(+)](o)) produced no significant difference in the fraction of the current that was protected from dofetilide inhibition with KCR1 WT or E33D. The previously described α-glucosyltransferase activity of KCR1 was found to be compromised in KCR1 E33D in a yeast expression system. Our findings suggest that KCR1 genetic variations that diminish the ability of KCR1 to protect KCNH2 from inhibition by commonly used therapeutic agents constitute a risk factor for the aLQTS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.yjmcc.2010.10.007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!