Systematic advancements in the field of musculoskeletal tissue engineering require clear communication about the mechanical environments that promote functional tissue growth. To support the rapid discovery of effective mechanostimulation protocols, this study developed and validated a mechanoactive transduction and evaluation bioreactor (MATE). The MATE provides independent and consistent mechanical loading of six specimens with minimal hardware. The six individual chambers accurately applied static and dynamic loads (1 and 10 Hz) in unconfined compression from 0.1 to 10 N. The material properties of poly(ethylene glycol) diacrylate hydrogels and bovine cartilage were measured by the bioreactor, and these values were within 10% of the values obtained from a standard single-chamber material testing system. The bioreactor was able to detect a 1-day 12% reduction (2 kPa) in equilibrium modulus after collagenase was added to six collagenase sensitive poly(ethylene glycol) diacrylate hydrogels (p = 0.03). By integrating dynamic stimulation and mechanical evaluation into a single batch-testing research platform, the MATE can efficiently map the biomechanical development of tissue-engineered constructs during long-term culture.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3045075PMC
http://dx.doi.org/10.1089/ten.TEC.2010.0381DOI Listing

Publication Analysis

Top Keywords

dynamic stimulation
8
stimulation mechanical
8
mechanical evaluation
8
tissue-engineered constructs
8
polyethylene glycol
8
glycol diacrylate
8
diacrylate hydrogels
8
novel bioreactor
4
bioreactor dynamic
4
mechanical
4

Similar Publications

Objective: What we hear may influence postural control, particularly in people with vestibular hypofunction. Would hearing a moving subway destabilize people similarly to seeing the train move? We investigated how people with unilateral vestibular hypofunction and healthy controls incorporated broadband and real-recorded sounds with visual load for balance in an immersive contextual scene.

Design: Participants stood on foam placed on a force-platform, wore the HTC Vive headset, and observed an immersive subway environment.

View Article and Find Full Text PDF

The sense of hearing originates in the cochlea, which detects sounds across dynamic sensory environments. Like other peripheral organs, the cochlea is subjected to environmental insults, including loud, damage-inducing sounds. In response to internal and external stimuli, the central nervous system directly modulates cochlear function through olivocochlear neurons (OCNs), which are located in the brainstem and innervate the cochlear sensory epithelium.

View Article and Find Full Text PDF

Frameshifting is an essential mechanism employed by many viruses including coronaviruses to produce viral proteins from a compact RNA genome. It is facilitated by specific RNA folds in the frameshift element (FSE), which has emerged as an important therapeutic target. For SARS-CoV-2, a specific 3-stem pseudoknot has been identified to stimulate frameshifting.

View Article and Find Full Text PDF

Dynamic Accommodation Responses in Subjects Wearing Myopia Control Spectacles Modifying Peripheral Refraction.

Invest Ophthalmol Vis Sci

January 2025

Laboratorio de Óptica, Universidad de Murcia, Campus de Espinardo, Murcia, Spain.

Purpose: Peripheral optics have been suggested to play a role in myopia progression, with accommodation responses also considered a potential contributor. This study aimed to investigate whether modifications in peripheral optics through different spectacle lenses affect accommodation responses.

Methods: Dynamic accommodation responses were assessed using a double-pass instrument while switching the target from distance (3 m for 3 seconds) to near (0.

View Article and Find Full Text PDF

A comparative analysis of perceptual noise in lateral and depth motion: Evidence from eye tracking.

J Vis

January 2025

Vision and Control of Action (VISCA) Group, Department of Cognition, Development and Psychology of Education, Institut de Neurociències, Universitat de Barcelona, Barcelona, Catalonia, Spain.

The characterization of how precisely we perceive visual speed has traditionally relied on psychophysical judgments in discrimination tasks. Such tasks are often considered laborious and susceptible to biases, particularly without the involvement of highly trained participants. Additionally, thresholds for motion-in-depth perception are frequently reported as higher compared to lateral motion, a discrepancy that contrasts with everyday visuomotor tasks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!