Unlabelled: The organic anion-transporting polypeptide 1b family (Oatp1b2 in rodents and OATP1B1/1B3 in humans) is liver-specific and transports various chemicals into the liver. However, the role of the Oatp1b family in the hepatic uptake of bile acids (BAs) into the liver is unknown. Therefore, in Oatp1b2-null mice, the concentrations of BAs in plasma, liver, and bile were compared with wild-type (WT) mice. It was first determined that livers of the Oatp1b2-null mice were not compensated by altered expression of other hepatic transporters. However, the messenger RNA of Cyp7a1 was 70% lower in the Oatp1b2-null mice. Increased expression of fibroblast growth factor 15 in intestines of Oatp1b2-null mice might be responsible for decreased hepatic expression of Cyp7a1 in Oatp1b2-null mice. The hepatic concentration and biliary excretion of conjugated and unconjugated BAs were essentially the same in Oatp1b2-null and WT mice. The serum concentration of taurine-conjugated BAs was essentially the same in the two genotypes. In contrast, the serum concentrations of unconjugated BAs were 3-45 times higher in Oatp1b2-null than WT mice. After intravenous administration of cholate to Oatp1b2-null mice, its clearance was 50% lower than in WT mice, but the clearance of taurocholate was similar in the two genotypes.
Conclusion: This study indicates that Oatp1b2 has a major role in the hepatic uptake of unconjugated BAs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3186067 | PMC |
http://dx.doi.org/10.1002/hep.23984 | DOI Listing |
Biochem Pharmacol
August 2013
Department of Internal Medicine, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA.
Organic anion transporting polypeptides (human: OATPs; rodent: Oatps) were thought to have important functions in bile acid (BA) transport. Oatp1a1, 1a4, and 1b2 are the three major Oatp1 family members in rodent liver. Our previous studies have characterized the BA homeostasis in Oatp1a1-null and Oatp1b2-null mice.
View Article and Find Full Text PDFToxicol Appl Pharmacol
November 2011
Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA.
BDE47, BDE99 and BDE153 are the predominant polybrominated diphenyl ether (PBDE) congeners detected in humans and can induce drug metabolizing enzymes in the liver. We have previously demonstrated that several human liver organic anion transporting polypeptides (humans: OATPs; rodents: Oatps) can transport PBDE congeners. Mice are commonly used to study the toxicity of chemicals like the PBDE congeners.
View Article and Find Full Text PDFHepatology
January 2011
Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA.
Unlabelled: The organic anion-transporting polypeptide 1b family (Oatp1b2 in rodents and OATP1B1/1B3 in humans) is liver-specific and transports various chemicals into the liver. However, the role of the Oatp1b family in the hepatic uptake of bile acids (BAs) into the liver is unknown. Therefore, in Oatp1b2-null mice, the concentrations of BAs in plasma, liver, and bile were compared with wild-type (WT) mice.
View Article and Find Full Text PDFToxicol Sci
May 2008
Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160-7417, USA.
The liver-specific importer organic anion transporting polypeptide 1b2 (Oatp1b2, Slco1b2, also known as Oatp4 and Lst-1) and its human orthologs OATP1B1/1B3 transport a large variety of chemicals. Oatp1b2-null mice were engineered by homologous recombination and their phenotype was characterized. Oatp1b2 protein was absent in livers of Oatp1b2-null mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!