Different missense, nonsense and frameshift mutations in the GAN gene encoding gigaxonin have been described to cause giant axonal neuropathy, a severe early-onset progressive neurological disease with autosomal recessive inheritance. By oligonucleotide array CGH analysis, we identified a 57-131 kb microdeletion affecting this gene in a patient with developmental delay, ataxia, areflexia, macrocephaly, and strikingly frizzy hair. The microdeletion was inherited from the mother and mutation analysis revealed a paternally inherited missense mutation c.1456G>A in exon 9 on the other allele. Our findings illustrate the power of higher resolution array CGH studies and highlight the importance of considering copy number variations in autosomal recessive diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajmg.a.33508DOI Listing

Publication Analysis

Top Keywords

giant axonal
8
axonal neuropathy
8
gan gene
8
autosomal recessive
8
array cgh
8
neuropathy caused
4
caused compound
4
compound heterozygosity
4
heterozygosity maternally
4
maternally inherited
4

Similar Publications

The Trail of Axonal Protein Synthesis: Origins and Current Functional Landscapes.

Neuroscience

January 2025

Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Av. Italia 3318, Montevideo, CP 11600, Uruguay; Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República, Iguá, Montevideo, 4225, CP 11400, Uruguay. Electronic address:

Local protein synthesis (LPS) in axons is now recognized as a physiological process, participating both in the maintenance of axonal function and diverse plastic phenomena. In the last decades of the 20th century, the existence and function of axonal LPS were topics of significant debate. Very early, axonal LPS was thought not to occur at all and was later accepted to play roles only during development or in response to specific conditions.

View Article and Find Full Text PDF

Giant axonal neuropathy (GAN) is a progressive neurodegenerative disease affecting the peripheral and central nervous system and is caused by bi-allelic variants in the GAN gene, leading to loss of functional gigaxonin protein. A treatment does not exist, but a first clinical trial using a gene therapy approach has recently been completed. Here, we conducted the first systematic study of GAN patients treated by German-speaking child neurologists.

View Article and Find Full Text PDF

We present a 7.5-year-old boy born to a family from the Iranian Azeri Turkish ethnic group with a consanguineous marriage who presents with a unique set of symptoms, suggesting Giant Axonal Neuropathy. He achieved independent walking at age 3 years, with frequent falling during running.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers focused on how different forms of α-synuclein (monomers and multimers) affect synaptic processes using lamprey synapses for their experiments.
  • Both forms impaired vesicle trafficking, but they had distinct effects: monomers caused abnormal fusion/fission and disrupted endocytosis, while multimers decreased vesicle docking.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!