Background: RdCVF and RdCVF2, encoded by the nucleoredoxin-like genes NXNL1 and NXNL2, are trophic factors with therapeutic potential that are involved in cone photoreceptor survival. Studying how their expression is regulated in the retina has implications for understanding both their activity and the mechanisms determining cell-type specificity within the retina.
Methodology/principal Findings: In order to define and characterize their promoters, a series of luciferase/GFP reporter constructs that contain various fragments of the 5'-upstream region of each gene, both murine and human, were tested in photoreceptor-like and non-photoreceptor cell lines and also in a biologically more relevant mouse retinal explant system. For NXNL1, 5'-deletion analysis identified the human -205/+57 bp and murine -351/+51 bp regions as having promoter activity. Moreover, in the retinal explants these constructs drove expression specifically to photoreceptor cells. For NXNL2, the human -393/+27 bp and murine -195/+70 bp regions were found to be sufficient for promoter activity. However, despite the fact that endogenous NXNL2 expression is photoreceptor-specific within the retina, neither of these DNA sequences nor larger upstream regions demonstrated photoreceptor-specific expression. Further analysis showed that a 79 bp NXNL2 positive regulatory sequence (-393 to 315 bp) combined with a 134 bp inactive minimal NXNL1 promoter fragment (-77 to +57 bp) was able to drive photoreceptor-specific expression, suggesting that the minimal NXNL1 fragment contains latent elements that encode cell-type specificity. Finally, based on bioinformatic analysis that suggested the importance of a CRX binding site within the minimal NXNL1 fragment, we found by mutation analysis that, depending on the context, the CRX site can play a dual role.
Conclusions/significance: The regulation of the Nucleoredoxin-like genes involves a CRX responsive element that can act as both as a positive regulator of promoter activity and as a modulator of cell-type specificity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2951342 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0013075 | PLOS |
Cell Signal
January 2025
Institute of Medical Science, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea; Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea. Electronic address:
Oxidative stress caused by reactive oxygen species (ROS) and superoxides is linked to various cancer-related biological events. Extracellular superoxide dismutase (SOD3), an antioxidant enzyme that removes superoxides, contributes to redox homeostasis and has the potential to regulate tumorigenesis. Histone deacetylase 6 (HDAC6), a major HDAC isoform responsible for mediating the deacetylation of non-histone protein substrates, also plays a role in cancer progression.
View Article and Find Full Text PDFPlant Sci
January 2025
Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China. Electronic address:
The stripe color of watermelon is a vital commercial trait and is the focus of attention of consumers and researchers. However, the genetic determinants of watermelon stripe color are incompletely understood. Based on the results of preliminary localization studies, we constructed a large-capacity F generation population (710 plants) using light-green striped ZXG1555 and green-striped Cream of Saskatchewan (COS) watermelon strains as parental lines for fine mapping.
View Article and Find Full Text PDFBiophys Rep (N Y)
January 2025
Department of Chemistry and Biochemistry, University of California Merced, Merced, 95343; Department of Chemistry, Syracuse University, Syracuse, 13244.
Transcription factor proteins bind to specific DNA promoter sequences and initiate gene transcription. These proteins often contain intrinsically disordered activation domains (ADs) that regulate their transcriptional activity. Like other disordered protein regions, ADs do not have a fixed three-dimensional structure and instead exist in an ensemble of conformations.
View Article and Find Full Text PDFPlant Physiol Biochem
December 2024
National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Sanya Institute, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, PR China; College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China. Electronic address:
Radish is an important annual root vegetable crop, whose yield is largely dependent on taproot thickening and development. However, the regulatory network of WOXs-mediated taproot development remains poorly understood in radish. Herein, the RsWOX13 was classified in an ancient clade of the WOX gene family that harbors a conserved homeodomain.
View Article and Find Full Text PDFPoult Sci
December 2024
Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Nanjing, PR China; Jiangsu Province Engineering Research Center of Precision Animal Breeding, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, PR China. Electronic address:
Anti-Müllerian hormone (AMH) plays an important role in avian ovarian follicle development. The high mRNA expression of AMH in avian ovarian prehierarchical follicles helps prevent premature granulosa cell differentiation. Vitamin D3 was reported to downregulate AMH mRNA expression in granulosa cells of prehierarchical follicles in hens; however, the underlying molecular mechanism remains unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!