In vivo mapping of vascular inflammation using multimodal imaging.

PLoS One

Department of Biomedical Engineering, University of California Davis, Davis, California, United States of America.

Published: October 2010

Background: Plaque vulnerability to rupture has emerged as a critical correlate to risk of adverse coronary events but there is as yet no clinical method to assess plaque stability in vivo. In the search to identify biomarkers of vulnerable plaques an association has been found between macrophages and plaque stability--the density and pattern of macrophage localization in lesions is indicative of probability to rupture. In very unstable plaques, macrophages are found in high densities and concentrated in the plaque shoulders. Therefore, the ability to map macrophages in plaques could allow noninvasive assessment of plaque stability. We use a multimodality imaging approach to noninvasively map the distribution of macrophages in vivo. The use of multiple modalities allows us to combine the complementary strengths of each modality to better visualize features of interest. Our combined use of Positron Emission Tomography and Magnetic Resonance Imaging (PET/MRI) allows high sensitivity PET screening to identify putative lesions in a whole body view, and high resolution MRI for detailed mapping of biomarker expression in the lesions.

Methodology/principal Findings: Macromolecular and nanoparticle contrast agents targeted to macrophages were developed and tested in three different mouse and rat models of atherosclerosis in which inflamed vascular plaques form spontaneously and/or are induced by injury. For multimodal detection, the probes were designed to contain gadolinium (T1 MRI) or iron oxide (T2 MRI), and Cu-64 (PET). PET imaging was utilized to identify regions of macrophage accumulation; these regions were further probed by MRI to visualize macrophage distribution at high resolution. In both PET and MR images the probes enhanced contrast at sites of vascular inflammation, but not in normal vessel walls. MRI was able to identify discrete sites of inflammation that were blurred together at the low resolution of PET. Macrophage content in the lesions was confirmed by histology.

Conclusions/significance: The multimodal imaging approach allowed high-sensitivity and high-resolution mapping of biomarker distribution and may lead to a clinical method to predict plaque probability to rupture.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2952595PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0013254PLOS

Publication Analysis

Top Keywords

vascular inflammation
8
multimodal imaging
8
clinical method
8
plaque stability
8
probability rupture
8
imaging approach
8
high resolution
8
mapping biomarker
8
resolution pet
8
plaque
6

Similar Publications

Assessing the impact of e-cigarettes on human barrier systems: a systematic review.

Transl Res

January 2025

Occupational Medicine, Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy. Electronic address:

The use of e-cigarettes has grown rapidly in recent years, raising concerns about their impact on human health, particularly on critical physiological barriers such as the blood-brain barrier (BBB), alveolar-capillary barrier, and vascular systems. This systematic review evaluates the current literature on the effects of e-cigarette exposure on these barrier systems. E-cigarettes, regardless of nicotine content, have been shown to induce oxidative stress, inflammation, and disruption of tight junction proteins, leading to impaired barrier function.

View Article and Find Full Text PDF

Background And Aims: Several systemic autoimmune diseases predispose to the enhancement of Atherosclerotic Cardiovascular Disease (ASCVD). These findings underline the role of inflammation in atherogenesis. Dermatomyositis (DM) and polymyositis (PM) are polygenic autoimmune disorders involving mainly skeletal muscles.

View Article and Find Full Text PDF

Assessing platelet-derived extracellular vesicles for potential as therapeutic targets in cardiovascular diseases.

Expert Opin Ther Targets

January 2025

Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands.

Introduction: Cardiovascular disease (CVD) is the leading cause of death worldwide. Platelet-derived extracellular vesicles (PEV) have attracted extensive attention in cardiovascular disease research in recent years because their cargo is involved in a variety of pathophysiological processes, such as thrombosis, immune response, promotion or inhibition of inflammatory response, promotion of angiogenesis as well as cell proliferation and migration.

Areas Covered: This review explores the role of PEV in various cardiovascular diseases (such as atherosclerosis, myocardial infarction, ischemia-reperfusion injury, and heart failure), with relation to its molecular cargo (nucleic acids, bioactive lipids, proteins) and aims to provide new insights in the pathophysiologic role of PEV, and methods for preventing and treating cardiovascular diseases based on PEV.

View Article and Find Full Text PDF

Mortality remains elevated during venoarterial extracorporeal membrane oxygenation support (VA-ECMO) for cardiogenic shock and the role of inflammation is uncertain. By using the neutrophil-to-lymphocyte ratio (NLR), we investigated inflammatory dynamics during VA-ECMO and their relation to clinical outcomes. A single-center, retrospective cohort study was conducted.

View Article and Find Full Text PDF

Inhibition of aortic CX3CR1+ macrophages mitigates thoracic aortic aneurysm progression in Marfan syndrome in mice.

J Clin Invest

January 2025

Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China.

The pathogenesis of thoracic aortic aneurysm (TAA) in Marfan syndrome (MFS) is generally attributed to vascular smooth muscle cell (VSMC) pathologies. However, the role of immune cell-mediated inflammation remains elusive. Single-cell RNA sequencing identified a subset of CX3CR1+ macrophages mainly located in the intima in the aortic roots and ascending aortas of Fbn1C1041G/+ mice, further validated in MFS patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!