The cerebellum is involved in the control of motor functions with Purkinje cells serving as the only output from the cerebellum. Purkinje cells are important targets for toxic substances and are vulnerable to prenatal insults. Intrauterine infection (IUI) has been shown to selectively target the developing cerebral white matter through lesioning, necrosis and inflammatory cytokine activation. Developmental and cognitive delays have been associated with animal models of IUI. The aim of this study was to determine if IUI leads to damage to Purkinje cells in the developing cerebellum and if any damage is associated with decreases in calbindin and motor behaviors in surviving pups. Pregnant rats were injected with Escherichia coli (1 × 10⁵ colony-forming units) or sterile saline at gestational day 17. Beginning at postnatal day (PND) 2, the pups were subjected to a series of developmental tests to examine developmental milestones. At PND 16, some pups were sacrificed and their brains extracted and processed for histology or protein studies. Hematoxylin and eosin (HE) staining was done to examine the general morphology of the Purkinje cells and to examine Purkinje cell density, area and volume. Calbindin expression was examined in the cerebellum via immunohistochemistry and Western blot techniques. The remaining rat pups were used to examine motor coordination and balance on a rotating rotarod at the prepubertal and adult ages. Prenatal E. coli injection did not significantly change birth weight or delivery time, but did delay surface righting and negative geotaxis in pups. Pups in the E. coli group also had a decrease in the number of Purkinje cells, as well as a decrease in Purkinje cell density and volume. HE staining demonstrated a change in Purkinje cell morphology. Calbindin expression was decreased in rats from the E. coli group as well. Locomotor tests indicated that while there were no significant changes in gross motor activity, motor coordination and balance was impaired in both prepubertal and adult rats from the E. coli group. In this model of IUI, we observed changes in Purkinje cell development which were associated with alterations in cerebellum-dependent motor behaviors. The decreases in calbindin and Purkinje cells were associated with developmental delays. These data further support the importance of IUI in brain development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3123740PMC
http://dx.doi.org/10.1159/000319506DOI Listing

Publication Analysis

Top Keywords

purkinje cells
24
purkinje cell
20
decreases calbindin
12
coli group
12
purkinje
11
motor behaviors
8
pnd pups
8
cell density
8
calbindin expression
8
motor coordination
8

Similar Publications

C1q/TNF-related protein 14 (CTRP14), also known as C1q-like 1 (C1QL1), is a synaptic protein predominantly expressed in the brain. It plays a critical role in the formation and maintenance of the climbing fiber-Purkinje cell synapses, ensuring that only one single winning climbing fiber from the inferior olivary neuron synapses with the proximal dendrites of Purkinje cells during the early postnatal period. Loss of CTRP14/C1QL1 results in incomplete elimination of supernumerary climbing fibers, leading to multiple persistent climbing fibers synapsing with the Purkinje cells.

View Article and Find Full Text PDF

Autosomal-recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is an early-onset neurodegenerative disease caused by mutations in the SACS gene. The first two mutations were identified in French Canadian populations 20 years ago. The disease is now known as one of the most frequent recessive ataxias worldwide.

View Article and Find Full Text PDF

Cerebellar Transcranial AC Stimulation Produces a Frequency-Dependent Bimodal Cerebellar Output Pattern.

Cerebellum

January 2025

Department of Neuroscience and Physiology, Grossman School of Medicine, NYU Neuroscience Institute, New York University, New York, NY, 10016, USA.

Article Synopsis
  • ctACS may offer a non-invasive treatment avenue for psychiatric and neurological disorders, but its effectiveness is limited by a lack of understanding of its impact on cerebellar activity at cellular levels.
  • Previous research indicated that AC stimulation influenced Purkinje cell (PC) and cerebellar nuclear (CN) cell activity in a frequency-dependent manner when applied to the cerebellum.
  • This study found that ctACS altered PC and CN activity in rats, revealing that the modulation patterns varied with stimulus frequency and electrode placement, indicating potential for targeted treatment strategies.
View Article and Find Full Text PDF

Left bundle branch block - innocent bystander, silent menace, or both.

Heart Rhythm

December 2024

Christian-Albrechts-University, Medical Faculty, Christian-Albrechts-Platz 4, 24118 Kiel, Germany; University of Applied Science, Life Sciences, An der Karlstadt 8, 27568 Bremerhaven, Germany. Electronic address:

Left bundle branch block (LBBB) causes immediate electrical and mechanical dys-synchrony of the left ventricle (LV) and gradual structural damages in the Purkinje cells and myocardium. Mechanical dys-synchrony reduces the LV ejection fraction (EF) instantly, but only to ≈55% in an otherwise normal heart. Because of the heart's in-built functional redundancy, a patient with LBBB does not always notice the heart's reduced efficiency straight away.

View Article and Find Full Text PDF

Dendritic pathology and overexpression of MAP2 in Purkinje cells from mice inoculated with rabies virus.

J Mol Histol

December 2024

Grupo de Morfología Celular, Instituto Nacional de Salud (INS), Av. Calle 26 No. 51-20, Bogotá, DC, 111321, Colombia.

The effect of rabies virus infection on dendritic morphology and on the expression of the MAP2 protein in Purkinje cells in the cerebellum of mice was studied. ICR mice were inoculated with rabies virus, and six days later, the mice were sacrificed, the cerebellum was removed and processed for Golgi-Cox staining or MAP2 immunohistochemistry. Infection with rabies virus altered the dendritic pattern of Purkinje cells ranged from moderate changes to accentuated retraction in the dendritic tree of some Purkinje cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!