Transposons are mobile DNA segments that can disrupt gene function by inserting in or near genes. Here, we show that insertional mutagenesis by the PiggyBac transposon can be used for cancer gene discovery in mice. PiggyBac transposition in genetically engineered transposon-transposase mice induced cancers whose type (hematopoietic versus solid) and latency were dependent on the regulatory elements introduced into transposons. Analysis of 63 hematopoietic tumors revealed that PiggyBac is capable of genome-wide mutagenesis. The PiggyBac screen uncovered many cancer genes not identified in previous retroviral or Sleeping Beauty transposon screens, including Spic, which encodes a PU.1-related transcription factor, and Hdac7, a histone deacetylase gene. PiggyBac and Sleeping Beauty have different integration preferences. To maximize the utility of the tool, we engineered 21 mouse lines to be compatible with both transposon systems in constitutive, tissue- or temporal-specific mutagenesis. Mice with different transposon types, copy numbers, and chromosomal locations support wide applicability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3719098PMC
http://dx.doi.org/10.1126/science.1193004DOI Listing

Publication Analysis

Top Keywords

piggybac transposon
8
cancer gene
8
gene discovery
8
discovery mice
8
mutagenesis piggybac
8
sleeping beauty
8
piggybac
6
mutagenesis
4
transposon mutagenesis
4
mutagenesis tool
4

Similar Publications

Successful transmission of Plasmodium falciparum from one person to another relies on the complete intraerythrocytic development of non-pathogenic sexual gametocytes infectious for anopheline mosquitoes. Understanding the genetic factors that regulate gametocyte development is vital for identifying transmission-blocking targets in the malaria parasite life cycle. Toward this end, we conducted a forward genetic study to characterize the development of gametocytes from sexual commitment to mature stage V.

View Article and Find Full Text PDF

High Absorption and Elasticity of a Novel Transgenic Silk with Egg Case Silk Protein from .

Int J Mol Sci

November 2024

College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing 400715, China.

Spider silk is part of a special class of natural protein fibers that have high strength and toughness: these materials have excellent comprehensive properties that are not found in other natural fibers (including silk) or most synthetic fibers. Spider egg case filaments have good hardness, can resist water, can protect spider eggs from external threats, have a significantly high initial modulus and high moisture absorption rate, and are expected to be used as a new generation of environmentally friendly natural polymer fibers and biomaterials. However, spiders are predatory and difficult to rear in large numbers, and it is also difficult to obtain spider egg case filaments in large quantities.

View Article and Find Full Text PDF

[Construction of a stable 4T1 cell line expressing by the PiggyBac transposon system].

Sheng Wu Gong Cheng Xue Bao

November 2024

School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, Hubei, China.

To investigate the mechanism of the major capsid protein VP5 (encoded by the gene) of oncolytic herpes simplex virus type Ⅱ (oHSV2) in regulating the antitumor function of immune cells, we constructed a mouse breast cancer cell line 4T1-iRFP-VP5-GFP stably expressing VP5 protein, near-infrared fluorescent protein (iRFP), and green fluorescent protein (GFP) by using the PiggyBac transposon system. Flow cytometry and Western blotting were employed to screen the monoclonal cell lines expressing both GFP and VP5 and examine the expression stability of in the constructed cell line. The results of SYBR Green I real-time PCR and Western blotting showed that the copies of and the expression level of VP5 protein in the 15th passage of 4T1-iRFP-VP5-GFP cells were significantly higher than those in the 4T1 cells transiently transfected with , demonstrating the stable insertion of into the 4T1 cell genome.

View Article and Find Full Text PDF

Engineering Saccharomyces boulardii for Probiotic Supplementation of l-Ergothioneine.

Biotechnol J

November 2024

State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China.

Saccharomyces boulardii, as a probiotic yeast, has shown great potential in regulating gut health and treating gastrointestinal diseases. Due to its unique antimicrobial and immune-regulating functions, it has become a significant subject of research in the field of probiotics. In this study, we aim to enhance the antioxidant properties of S.

View Article and Find Full Text PDF

A strategy for improving the mechanical properties of silk fibers through the combination of genetic manipulation and zinc ion crosslinking.

Int J Biol Macromol

December 2024

College of Animal Sciences, Zhejiang University, 310058 Hangzhou, China; Suposik Bioscience Technologies Ltd., 314031 Jiaxing, China; Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, 310058 Hangzhou, China. Electronic address:

Silk fiber is generally considered an excellent biological material due to its good biocompatibility, morphological plasticity and biodegradability. Previously, the construction of silkworm silk gland bioreactors based on the piggyBac transposon has been optimized. However, the inserted exogenous genes have problems such as position uncertainty, and expression is not strictly controlled.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!