A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The effect of ambient air pollution on exhaled nitric oxide in the Children's Health Study. | LitMetric

We assessed the effect of daily variations in ambient air pollutants on exhaled nitric oxide fraction (F(eNO)) using data from a cohort of school children with large differences in air pollutant exposures from the Children's Health Study. Based on a cohort of 2,240 school children from 13 Southern Californian communities, cumulative lagged average regression models were fitted to determine the association between F(eNO) and ambient air pollution levels from central site monitors with lags of up to 30 days prior to F(eNO) testing. Daily 24-h cumulative lagged averages of particles with a 50% cut-off aerodynamic diameter of 2.5 µm (PM₂.₅; over 1-8 days) and particles with a 50% cut-off aerodynamic diameter of 10 µm (PM₁₀; over 1-7 days), as well as 10:00-18:00 h cumulative lagged average of O₃ (over 1-23 days) were significantly associated with 17.42% (p<0.01), 9.25% (p<0.05) and 14.25% (p<0.01) higher F(eNO) levels over the interquartile range of 7.5 μg·m⁻³, 12.97 μg·m⁻³ and 15.42 ppb, respectively. The effects of PM₂.₅, PM₁₀ and O₃ were higher in the warm season. The particulate matter effects were robust to adjustments for effects of O₃ and temperature and did not vary by asthma or allergy status. In summary, short-term increases in PM₂.₅, PM₁₀ and O₃ were associated with airway inflammation independent of asthma and allergy status, with PM₁₀ effects significantly higher in the warm season.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4340653PMC
http://dx.doi.org/10.1183/09031936.00081410DOI Listing

Publication Analysis

Top Keywords

ambient air
12
cumulative lagged
12
air pollution
8
exhaled nitric
8
nitric oxide
8
children's health
8
health study
8
school children
8
lagged average
8
particles 50%
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!