Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Ce³+, a rare earth element (REE), has been widely used in high-technology industries. Despite the importance of Ce³+ in the fields of chemistry and physics, the role of Ce³+ in biology has been ignored. To investigate physiological effects of Ce³+ on microorganisms, we screened microorganisms that showed peculiar growth in the presence of Ce³+. We isolated a free-living soil bacterium that produced exopolysaccharide (EPS) around its colonies on 1/100 nutrient agar with 30 μM CeCl₃ or 1.0% D-mannitol. The bacterium was identified as Bradyrhizobium sp. by morphological, biochemical, and physiological tests as well as 16S rDNA sequence analysis. La³+, Pr³+, and Nd³+ also induced EPS production in large quantities, while Sm³+ did in small amounts. However, other heavier REEs from Eu³+ to Lu³+, and metals such as Na+, Al³+, K+, Ca²+, V³+, Cr³+, Co²+, Ni²+, Sr²+, Ba²+, and Pb²+ did not induce EPS production. The mean molecular weight of EPS was estimated to be approximately 1 x 10⁶ by Sepharose CL-4B column chromatography. TLC revealed that EPS was composed of L-rhamnose. Quantitative analysis of alditol acetate derivatives of acid hydrolyzate of EPS by GLC revealed that EPS was composed of more than 95% L-rhamnose, indicating that this EPS was a rhamnan. The spectrum of FT-IR of the rhamnan demonstrated that L-rhamnose residues in the rhamnan were α-linked. GC/MS analysis of methylated alditol acetate derivatives of the rhamnan demonstrated that it was composed of main chain α-(1→4)-linked L-rhamnopyranosyl residues. From spectral analyses of ¹H-NMR and FT-IR, EPS produced in the presence of 1.0% D-mannitol was found to be structurally similar to rhamnans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiosc.2010.09.008 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!