Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Biologically active oligosaccharides related to glycosaminoglycans are accumulating increased attention because of their therapeutic potential and for their value in mechanistic studies. Heparan mimetics (HMs) are a family of dextran based polymer known to mimic the properties of glycosaminoglycans, and particularly those of heparan sulfates, as to interact with heparin binding proteins. HMs have shown to stimulate tissue repair in various animal models. Here, we use different methods to depolymerize HMs in order to produce a library of related oligosaccharides and study their biological activities. Since HMs were resistant to endoglycanases activities, depolymerization was achieved by chemical approaches. In vitro biological studies showed that HM oligosaccharides can differentially potentiate FGF-2 mitogenic and antithrombotic activities. In vivo, a selected oligosaccharide (H-dp12) showed to be able to regenerate tissue almost as well as the related polymeric product. The very low anticoagulant activity and high biological activity of low mass oligosaccharides give to these products a new therapeutic potential.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2010.09.043 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!