Objectives: The goal of this pre-clinical study was to assess the therapeutic efficacy of doxycycline (Doxy) for desmin-related cardiomyopathy (DRC) and to elucidate the potential mechanisms involved.

Background: DRC, exemplifying cardiac proteinopathy, is characterized by intrasarcoplasmic protein aggregation and cardiac insufficiency. No effective treatment for DRC is available presently. Doxy was shown to attenuate aberrant intranuclear aggregation and toxicity of misfolded proteins in noncardiac cells and animal models of other proteinopathies.

Methods: Mice and cultured neonatal rat cardiomyocytes with transgenic (TG) expression of a human DRC-linked missense mutation R120G of αB-crystallin (CryAB(R120G)) were used for testing the effect of Doxy. Doxy was administered via drinking water (6 mg/ml) initiated at 8 or 16 weeks of age.

Results: Doxy treatment initiated at 16 weeks of age significantly delayed the premature death of CryAB(R120G) TG mice, with a median lifespan of 30.4 weeks (placebo group, 25 weeks; p < 0.01). In another cohort of CryAB(R120G) TG mice, Doxy treatment initiated at 8 weeks of age significantly attenuated cardiac hypertrophy in 1 month. Further investigation revealed that Doxy significantly reduced the abundance of CryAB-positive microscopic aggregates, detergent-resistant CryAB oligomers, and total ubiquitinated proteins in CryAB(R120G) TG hearts. In cell culture, Doxy treatment dose-dependently suppressed the formation of both microscopic protein aggregates and detergent-resistant soluble CryAB(R120G) oligomers and reversed the up-regulation of p62 protein induced by adenovirus-mediated CryAB(R120G) expression.

Conclusions: Doxy suppresses CryAB(R120G)-induced aberrant protein aggregation in cardiomyocytes and prolongs CryAB(R120G)-based DRC mouse survival.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2964264PMC
http://dx.doi.org/10.1016/j.jacc.2010.01.075DOI Listing

Publication Analysis

Top Keywords

protein aggregation
12
initiated weeks
12
doxy treatment
12
doxy
9
aggregation cardiomyocytes
8
cardiac proteinopathy
8
treatment initiated
8
weeks age
8
cryabr120g mice
8
aggregates detergent-resistant
8

Similar Publications

Ultrasound-Activated Copper Matrix Nanosonosensitizer for Cuproptosis-Based Synergy Therapy.

ACS Appl Bio Mater

January 2025

State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.

Cuproptosis exhibits enormous application prospects in treatment. However, cuproptosis-based therapy is impeded by the limited intracellular copper ions, the nonspecific delivery, uncontrollable release, and chelation of endogenous overproduced glutathione (GSH). In this work, an ultrasound-triggered nanosonosensitizer (p-TiO-Cu(I)) was constructed for Cu(I) delivery, on-demand release, GSH consumption, and deeper tissue response.

View Article and Find Full Text PDF

Water dynamics are investigated in binary osmolyte-water mixtures, exhibiting a microscopic heterogeneity driven by molecular aggregation, on the basis of molecular dynamics (MD) simulation studies. The protecting osmolyte TMAO molecules in solution are evenly dispersed without the formation of noticeable osmolyte aggregates, while the denaturant TMU molecules aggregate readily, generating microscopic heterogeneity in the spatial distribution of component molecules in TMU-water mixtures. A combined study of MD simulation with graph theoretical analysis and spatial inhomogeneity measurement with -values in the two osmolyte solutions revealed that the translational and rotational motions of water in the microheterogeneous environment of TMU-water mixtures are less hindered than those in the homogeneous media of TMAO-water mixtures.

View Article and Find Full Text PDF

Extracellular thiol isomerase ERp5 regulates integrin αIIbβ3 activation by inhibition of fibrinogen binding.

Platelets

December 2025

Cyrus Tang Medical Institute, The Fourth Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China.

Recent studies have shown that anti-ERp5 antibodies inhibit platelet activation and thrombus formation; Moreover, ERp5-deficient platelets exhibit enhanced platelet reactivity via regulation of endoplasmic reticulum (ER) stress. In this study, we used a new ERp5-knockout mouse model as well as recombinant ERp5 (rERp5) protein, to examine the role of ERp5 in platelet function and thrombosis. Although platelet-specific ERp5-deficient mice had decreased platelet count, the mice had shortened tail-bleeding times and enhanced platelet accumulation in FeCl-induced mesenteric artery injury, compared with wild-type mice.

View Article and Find Full Text PDF

Peptide-based amyloid-beta aggregation inhibitors.

RSC Med Chem

December 2024

Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Sector 67, S. A. S. Nagar Punjab 160062 India

Aberrant protein misfolding and accumulation is considered to be a major pathological pillar of neurodegenerative disorders, including Alzheimer's and Parkinson's diseases. Aggregation of amyloid-β (Aβ) peptide leads to the formation of toxic amyloid fibrils and is associated with cognitive dysfunction and memory loss in Alzheimer's disease (AD). Designing molecules that inhibit amyloid aggregation seems to be a rational approach to AD drug development.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is characterized by the accumulation of protein aggregates, which are thought to be influenced by posttranslational modifications (PTMs). Dehydroamino acids (DHAAs) are rarely observed PTMs that contain an electrophilic alkene capable of forming protein-protein crosslinks, which may lead to protein aggregation. We report here the discovery of DHAAs in the protein aggregates from AD, constituting an unknown and previously unsuspected source of extensive proteomic complexity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!