Methylation of specific lysine residues of histone H3 and H4 has been reported to be important in the structuring of chromatin and for the transcription of certain genes. Proteins with SET domains have been shown to methylate specific lysine residues of histone H3 and H4. We isolated a SET domain-containing gene from the zebrafish (Danio rerio). The gene has the highest sequence similarity to human NSD2, also known as Wolf-Hirschhorn syndrome candidate 1 or WHSC1, and therefore, was named DrWhsc1. DrWhsc1 mRNA is expressed in various tissues with the highest level in testis. Morpholino oligonucleotides for the DrWhsc1 gene affected early embryogenesis in zebrafish, such as endbrain enlargement, abnormal cartilage, marked reduction of bone, and incomplete motor neuron formation. Such developmental abnormalities are also observed in Wolf-Hirschhorn syndrome patients and Whsc1-deficient mice. In addition, suppression of the DrWhsc1 gene or defect in the SET domain of DrWhsc1 resulted in impairment of di-methylation of histone H3K36 at early embryogenesis. These results indicate that DrWhsc1 is a functional homolog of WHSC1 and that the SET domain of DrWhsc1 is essential for di-methylation of histone H3K36 in zebrafish.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2010.10.027DOI Listing

Publication Analysis

Top Keywords

human nsd2
8
specific lysine
8
lysine residues
8
residues histone
8
wolf-hirschhorn syndrome
8
drwhsc1 gene
8
early embryogenesis
8
set domain
8
domain drwhsc1
8
di-methylation histone
8

Similar Publications

Discovery of SET domain-binding primary alkylamine-tethered degraders for the simultaneous degradation of NSD2-long and RE-IIBP isoforms.

Eur J Med Chem

February 2025

Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District, Guangdong, 528400, China; Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou Baiyun District, Guangzhou, Guangdong, 510515, China. Electronic address:

Nuclear receptor binding SET domain protein 2 (NSD2) is involved in various pathologic processes and is considered as an important target for cancer therapy. Due to alternative splicing, NSD2 has 3 isoforms: long, short and RE-IIBP. Although previous studies reported the degradation of PWWP1 domain-containing NSD2-long and short isoforms through PWWP1-binding molecules, the degradation of RE-IIBP which does not contain PWWP1 has been neglected to date.

View Article and Find Full Text PDF

Immunocompetent mouse models of multiple myeloma.

Semin Hematol

November 2024

Department of Medicine, Division of Hematology/Oncology, Mayo Clinic Arizona, Scottsdale, AZ 85259.

Immunocompetent murine models of multiple myeloma are critical for understanding the pathogenesis of multiple myeloma and for the development of novel immunotherapeutics. Different models are available in Balb/c and C57Bl strains, each with different advantages and disadvantages. The availability of many transplantable cell lines allows for the conduct of experiments with large cohorts of mice bearing identical tumors, while cell lines that grow in vitro can be used for genetic manipulations.

View Article and Find Full Text PDF

Histone methyltransferase NSD2 (MMSET) overexpression in multiple myeloma (MM) patients plays an important role in the development of this disease subtype. Through the expansion of transcriptional activating H3K36me2 and the suppression of repressive H3K27me3 marks, NSD2 activates an aberrant set of genes that contribute to myeloma growth, adhesive and invasive activities. NSD2 transcriptional activity also depends on its non-catalytic domains, which facilitate its recruitment to chromatin through histone binding.

View Article and Find Full Text PDF

Purpose: Wolf-Hirschhorn syndrome (WHS), a contiguous gene syndrome caused by heterozygous deletions of the distal short arm of chromosome 4 that includes , reportedly causes specific DNA methylation signatures in peripheral blood cells. However, the genomic loci responsible for these signatures have not been elucidated. The present study aims to define the loci underlying WHS-related DNA methylation signatures and explore the role of in these signatures.

View Article and Find Full Text PDF

Epithelial NSD2 maintains FMO-mediated taurine biosynthesis to prevent intestinal barrier disruption.

Clin Transl Med

December 2024

State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.

Background: Inflammatory bowel disease (IBD) presents a significant challenge due to its intricate pathogenesis. NSD2, a histone methyltransferase responsible for dimethylating histone 3 at lysine 36, is associated with transcriptional activation. NSD2 expression is decreased in both the intestinal epithelial cells (IECs) of IBD patients and the IBD mouse model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!