Fluorophore labeling to monitor tRNA dynamics.

Methods Enzymol

Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.

Published: January 2011

Transfer RNA (tRNA) molecules mediate translation of the nucleic acid genetic code into the amino acid building blocks of proteins, thus ensuring the survivability of cells. The dynamic properties of tRNA molecules are crucial to their functions in both activity and specificity. This chapter summarizes two methods that have been recently developed or improved upon previous protocols to introduce fluorophores to site-specific positions in tRNA. One method enables incorporation of fluorophores carrying a primary amine (such as proflavin or rhodamine) to dihydrouridine (D) residues in the tRNA tertiary core, and a second method enables incorporation of pyrroloC and 2-aminopurine to positions 75 and 76, respectively, of the CCA sequence at the 3' end. These site-specific fluorophore labeling methods utilize tRNA transcripts as the substrates to provide the versatility with both wild-type and mutant sequences for examining their motions in space and time during the process of decoding genetic information.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S0076-6879(09)69004-2DOI Listing

Publication Analysis

Top Keywords

fluorophore labeling
8
trna molecules
8
method enables
8
enables incorporation
8
trna
6
labeling monitor
4
monitor trna
4
trna dynamics
4
dynamics transfer
4
transfer rna
4

Similar Publications

Predicting the effectiveness of chemotherapy treatment in lung cancer utilizing artificial intelligence-supported serum N-glycome analysis.

Comput Biol Med

January 2025

Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprem, Hungary; Horváth Csaba Memorial Laboratory of Bioseparation Sciences, Research Center for Molecular Medicine, Doctoral School of Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary. Electronic address:

An efficient novel approach is introduced to predict the effectiveness of chemotherapy treatment in lung cancer by monitoring the serum N-glycome of patients combined with artificial intelligence-based data analysis. The study involved thirty-three lung cancer patients undergoing chemotherapy treatments. Serum samples were taken before and after the treatment.

View Article and Find Full Text PDF

The genus Pelomyxa includes 15 species of anaerobic Archamoebae with remarkable diverse nucleoplasm morphology. Nuclear structures, like chromatin and nucleoli, of several members of the genus was previously identified only based on their ultrastructural similarity to typical structures of somatic cells of higher eukaryotes. Here, we explored an easy-to-use, one-step intravital staining method with DAPI and pyronin to distinguish between DNA and RNA structures in nuclei of unfixed cells of Pelomyxa belevskii and P.

View Article and Find Full Text PDF

Phytochromes are biliprotein photoreceptors found in bacteria, fungi, and plants. The soil bacterium Agrobacterium fabrum has two phytochromes, Agp1 and Agp2, which work together to control DNA transfer to plants and bacterial conjugation. Both phytochromes interact as homodimeric proteins.

View Article and Find Full Text PDF

Mitochondria are major sites of reactive oxygen species (ROS) production within cells. ROS are important signalling molecules, but excessive production can cause cellular damage and dysfunction. It is therefore crucial to accurately determine when, how and where ROS are produced within mitochondria.

View Article and Find Full Text PDF

Background: Ochratoxin A (OTA) is toxic secondary metabolites produced by fungi and can pose a serious threat to food safety and human health. Due to the high stability and toxicity, OTA contamination in agricultural products is of great concern. Therefore, the development of a highly sensitive and reliable OTA detection method is crucial to ensure food safety.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!