RNA-RNA crosslinking provides a rapid means of obtaining evidence for the proximity of functional groups in structurally complex RNAs and ribonucleoproteins. Such evidence can be used to provide a physical context for interpreting structural information from other biochemical and biophysical methods and for the design of further experiments. The identification of crosslinks that accurately reflect the native conformation of the RNA of interest is strongly dependent on the position of the crosslinking agent, the conditions of the crosslinking reaction, and the method for mapping the crosslink position. Here, we provide an overview of protocols and experimental considerations for RNA-RNA crosslinking with the most commonly used long- and short-range photoaffinity reagents. Specifically, we describe the merits and strategies for random and site-specific incorporation of these reagents into RNA, the crosslinking reaction and isolation of crosslinked products, the mapping crosslinked sites, and assessment of the crosslinking data.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3246272 | PMC |
http://dx.doi.org/10.1016/S0076-6879(09)68007-1 | DOI Listing |
J Transl Med
December 2024
Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China.
Background: Neuroblastoma (NB), the most prevalent solid tumor in children, arises from sympathetic nervous system and accounts for 15% of pediatric cancer mortality. This malignancy exhibits substantial genetic and clinical heterogeneity, thus complicating treatment strategies. Poly(ADP-ribose) polymerase 1 (PARP1), a key enzyme catalyzing polyADP-ribosylation (PARylation), plays critical roles in various cellular processes, and contributes to tumorigenesis and aggressiveness.
View Article and Find Full Text PDFMethods Protoc
December 2024
Department of Pathology, Herlev University Hospital, 2730 Herlev, Denmark.
High-quality RNA is crucial in clinical diagnostics and precision medicine. Formalin-fixed and paraffin-embedded (FFPE) tissues pose a challenge due to nucleic acid fragmentation and crosslinking. In this pilot study, various commercially available techniques for extracting RNA from small FFPE samples were compared.
View Article and Find Full Text PDFFEBS J
December 2024
Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Hungary.
Transglutaminase 2 (TG2) is a uniquely versatile protein with diverse catalytic activities, such as transglutaminase, protein disulfide isomerase, GTPase and protein kinase, and participates in several biological processes. According to information available in the RBP2GO database, TG2 can act as an RNA-binding protein (RBP). RBPs participate in posttranscriptional gene expression regulation, therefore influencing the function of RNA, whereas RNA molecules can also modulate the biological activity of RBPs.
View Article and Find Full Text PDFCell Rep
December 2024
Department of Non-coding RNAs, Institute of Bioorganic Chemistry of the Polish Academy of Sciences, 61-704 Poznan, Poland. Electronic address:
RNA-protein interactions orchestrate hundreds of pathways in homeostatic and stressed cells. We applied an RNA-protein interactome capture method called protein cross-linked RNA extraction (XRNAX) to shed light on the RNA-bound proteome in dysmyelination. We found sets of canonical RNA-binding proteins (RBPs) regulating alternative splicing and engaged in the cytoplasmic granules to be perturbed at the level of their RNA interactome.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Wise Laboratory for Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston Street, Building 55A, Room 1422, Louisville, KY 40292, United States. Electronic address:
Hexavalent chromium [Cr(VI)] is a human lung carcinogen with widespread exposure. How Cr(VI) causes cancer is poorly understood, but chromosome instability plays a central role. Inhibition of DNA repair pathways leads to chromosome instability; however, despite the importance of these pathways in the mechanism of Cr(VI)-induced lung carcinogenesis, there are no data considering in-depth analysis on the transcriptional changes of genes involved in them.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!