Platelet activation is the initiating step to thromboembolic complications in blood-contacting medical devices. Currently, there are no widely accepted testing protocols or relevant metrics to assess platelet activation during the in vitro evaluation of new medical devices. In this article, two commonly used platelet activation marker antibodies, CD62P (platelet surface P-selectin) and PAC1 (activated GP IIb/IIIa), were evaluated using flow cytometry. Anticoagulant citrate dextrose solution A (ACDA) and heparin anticoagulated human blood from healthy donors were separately exposed to shear stresses of 0, 10, 15, and 20 Pa for 120 s using a cone-plate rheometer model, and immediately mixed with the platelet marker antibodies for analysis. To monitor for changes in platelet reactivity between donors and over time, blood samples were also evaluated after exposure to 0, 2, and 20 µM of adenosine diphosphate (ADP). Following ADP stimulation, the percentage of both CD62P and PAC1 positive platelets increased in a dose dependent fashion, even 8 h after the blood was collected. After shear stress stimulation, both CD62P and PAC1 positive platelets increased significantly at shear stress levels of 15 and 20 Pa when ACDA was used as the anticoagulant. However, for heparinized blood, the PAC1 positive platelets decreased with increasing shear stress, while the CD62P positive platelets increased. Besides the anticoagulant effect, the platelet staining buffer also impacted PAC1 response, but had little effect on CD62P positive platelets. These data suggest that CD62P is a more reliable marker compared with PAC1 for measuring shear-dependent platelet activation and it has the potential for use during in vitro medical device testing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1525-1594.2010.01051.x | DOI Listing |
Platelets
December 2025
Department of Pharmacology and Physiology, George Washington University, Washington, DC, USA.
Platelet-like particles (PLPs), derived from megakaryocytic cell lines MEG-01 and K-562, are widely used as a surrogate to study platelet formation and function. We demonstrate by RNA-Seq that PLPs are transcriptionally distinct from platelets. Expression of key genes in signaling pathways promoting platelet activation/aggregation, such as the PI3K/AKT, protein kinase A, phospholipase C, and α-adrenergic and GP6 receptor pathways, was missing or under-expressed in PLPs.
View Article and Find Full Text PDFCurr Cardiol Rev
January 2025
Laboratory of Chemoinformatics, Infochemistry Scientific Center, ITMO University, Saint-Petersburg, Russian Federation.
Platelets, tiny cell fragments measuring 2-4 μm in diameter without a nucleus, play a crucial role in blood clotting and maintaining vascular integrity. Abnormalities in platelets, whether genetic or acquired, are linked to bleeding disorders, increased risk of blood clots, and cardiovascular diseases. Advanced proteomic techniques offer profound insights into the roles of platelets in hemostasis and their involvement in processes such as inflammation, metastasis, and thrombosis.
View Article and Find Full Text PDFThromb Haemost
January 2025
Hemostasis and Erythropathology Laboratory, Hematopathology, Pathology Department, Centre de Diagnòstic Biomèdic (CDB), Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.
Background: V617F-mutated myeloproliferative neoplasms (MPN) exhibit abnormal proliferation of bone marrow progenitors and increased risk of thrombosis, specifically in splanchnic veins (SVT). The contribution of the endothelium to the development of the prothrombotic phenotype was explored.
Material And Methods: Plasma and serum samples from V617F MPN patients with (n=26) or without (n=7) thrombotic debut and different treatments, were obtained (n=33).
J Tradit Complement Med
January 2025
National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei City, 112026, Taiwan.
Amidst growing concerns over COVID-19 aftereffects like fatigue and cognitive issues, NRICM101, a traditional Chinese medicine, has shown promise. Used by over 2 million people globally, it notably reduces hospitalizations and intubations in COVID-19 patients. To explore whether NRICM101 could combat COVID-19 brain fog, we tested NRICM101 on hACE2 transgenic mice administered the S1 protein of SARS-CoV-2, aiming to mitigate S1-induced cognitive issues by measuring animal behaviors, immunohistochemistry (IHC) staining, and next-generation sequencing (NGS) analysis.
View Article and Find Full Text PDFBMC Immunol
January 2025
Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chungnam National University School of Medicine, Chungnam National University Hospital, 282 Munhwa-Ro, Jung-Gu, Daejeon, 35015, Republic of Korea.
Background: Interleukin-6 (IL-6) plays a central role in sepsis-induced cytokine storm involving immune hyperactivation and early neutrophil activation. Programmed death protein-1 (PD-1) is associated with sepsis-induced immunosuppression and lymphocyte apoptosis. However, the effects of simultaneous blockade of IL-6 and PD-1 in a murine sepsis model are not well understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!