Staphylococcus aureus is able to invade non-professional phagocytes by interaction of staphylococcal adhesins with extracellular proteins of mammalian cells and eventually resides in acidified phago-endosomes. Some staphylococcal strains have been shown to subsequently escape from this compartment. A functional agr quorum-sensing system is needed for phagosomal escape. However, the nature of this agr dependency as well as the toxins involved in disruption of the phagosomal membrane are unknown. Using a novel technique to detect vesicular escape of S. aureus, we identified staphylococcal virulence factors involved in phagosomal escape. Here we show that a synergistic activity of the cytolytic peptide, staphylococcal δ-toxin and the sphingomyelinase β-toxin enable the phagosomal escape of staphylococci in human epithelial as well as in endothelial cells. The agr dependency of this process can be directly explained by the location of the structural gene for δ-toxin within the agr effector RNAIII.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1462-5822.2010.01538.xDOI Listing

Publication Analysis

Top Keywords

phagosomal escape
12
staphylococcus aureus
8
human epithelial
8
endothelial cells
8
agr dependency
8
escape
6
expression δ-toxin
4
δ-toxin staphylococcus
4
aureus mediates
4
mediates escape
4

Similar Publications

Hantaan virus glycoprotein Gc induces NEDD4-dependent PTEN ubiquitination and degradation to escape the restriction of autophagosomes and facilitate viral propagation.

FASEB J

January 2025

State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, Hubei, China.

Hantaan virus (HTNV) infection causes severe hemorrhagic fever with renal syndrome (HFRS) in humans and the infectious process can be regulated by autophagy. The phosphatase and tensin homolog (PTEN) protein has antiviral effects and plays a critical role in the autophagy pathway. However, the relationship between PTEN and HTNV infection is not clear and whether PTEN-regulated autophagy involves in HTNV replication is unknown.

View Article and Find Full Text PDF

() is capable of causing pneumonia, arthritis, mastitis, and various other ailments in cattle of all age groups, posing a significant threat to the healthy progression of the worldwide cattle industry. The invasion of non-phagocytic host cells serves as a pivotal mechanism enabling to evade the immune system and penetrate mucosal barriers, thereby promoting its spread. To investigate the differences in invasion into four types of non-phagocytic cells (Madin-Darby bovine kidney (MDBK) cells, embryonic bovine lung (EBL) cells, bovine embryo tracheal (EBTr) cells and bovine turbinate (BT) cells) and further elucidate its invasion mechanism, this study first optimized the experimental methods for invasion into cells.

View Article and Find Full Text PDF

Conventional dendritic cells (cDCs) generate protective cytotoxic T lymphocyte (CTL) responses against extracellular pathogens and tumors. This is achieved through a process known as cross-presentation (XP), and, despite its biological importance, the mechanism(s) driving XP remains unclear. Here, we show that a cDC-specific pore-forming protein called apolipoprotein L 7C (APOL7C) is up-regulated in response to innate immune stimuli and is recruited to phagosomes.

View Article and Find Full Text PDF

-Containing Vacuole within : Isolation and Proteomic Characterization.

Microorganisms

September 2024

Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia.

is a highly infectious gram-negative bacterium that causes tularemia in humans and animals. It can survive and multiply in a variety of cells, including macrophages, dendritic cells, amoebae, and arthropod-derived cells. However, the intracellular life cycle of a bacterium varies depending on the cell type.

View Article and Find Full Text PDF

Impaired tumor cell antigen presentation contributes significantly to immune evasion. This study identifies Berbamine hydrochloride (Ber), a compound derived from traditional Chinese medicine, as an effective inhibitor of autophagy that enhances antigen presentation in tumor cells. Ber increases MHC-I-mediated antigen presentation in melanoma cells, improving recognition and elimination by CD8 T cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!