Adiponectin is an adipokine increasing glucose and fatty acid metabolism and improving insulin sensitivity. The aim of this study was to investigate the role of adiponectin in the regulation of adipocyte lipolysis. Human adipocytes isolated from biopsies obtained during surgical operations from 16 non-obese and 17 obese subjects were incubated with 1) human adiponectin (20 microg/ml) or 2) 0.5 mM AICAR - activator of AMPK (adenosine monophosphate activated protein kinase). Following these incubations, isoprenaline was added (10(-6) M) to investigate the influence of adiponectin and AICAR on catecholamine-induced lipolysis. Glycerol concentration was measured as lipolysis marker. We observed that adiponectin suppressed spontaneous lipolysis by 21 % and isoprenaline-induced lipolysis by 14 % in non-obese subjects. These effects were not detectable in obese individuals, but statistically significant differences in the effect of adiponectin between obese and non-obese were not revealed by two way ANOVA test. The inhibitory effect of AICAR and adiponectin on lipolysis was reversed by Compound C. Our results suggest, that adiponectin in physiological concentrations inhibits spontaneous as well as catecholamine-induced lipolysis. This effect might be lower in obese individuals and this regulation seems to involve AMPK.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.33549/physiolres.931863 | DOI Listing |
Mol Metab
December 2024
Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA; Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA; Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA. Electronic address:
Objective: The uncoupling protein 1 (UCP1) is induced in brown or "beige" adipocytes through catecholamine-induced cAMP signaling, which activates diverse transcription factors. UCP1 expression can also be enhanced by PPARγ agonists such as rosiglitazone (Rsg). However, it is unclear whether this upregulation results from de-novo differentiation of beige adipocytes from progenitor cells, or from the induction of UCP1 in pre-existing adipocytes.
View Article and Find Full Text PDFJCI Insight
November 2024
Department of Physiology, College of Medicine.
Objective: The uncoupling protein 1 (UCP1) is induced in brown or "beige" adipocytes through catecholamine-induced cAMP signaling, which activates diverse transcription factors. UCP1 expression can also be enhanced by PPARγ agonists such as rosiglitazone (Rsg). However, it is unclear whether this upregulation results from de-novo differentiation of beige adipocytes from progenitor cells, or from the induction of UCP1 in pre-existing adipocytes.
View Article and Find Full Text PDFMol Metab
March 2024
Chinese Institute for Brain Research, Zhongguancun Life Science Park, 102206 Beijing, China; Peking University School of Life Sciences, Peking-Tsinghua Center for Life Sciences, 100871 Beijing, China; PKU-IDG/McGovern Institute for Brain Research, Beijing, China; Department of Neuroscience, Karolinska Institute, Stockholm 17177, Sweden; Stellenbosch Institute for Advanced Study, Wallenberg Research Centre at Stellenbosch University, Stellenbosch 7600, South Africa. Electronic address:
Background & Aims: Genome-wide studies have identified three missense variants in the human gene ACVR1C, encoding the TGF-β superfamily receptor ALK7, that correlate with altered waist-to-hip ratio adjusted for body mass index (WHR/BMI), a measure of body fat distribution.
Methods: To move from correlation to causation and understand the effects of these variants on fat accumulation and adipose tissue function, we introduced each of the variants in the mouse Acvr1c locus and investigated metabolic phenotypes in comparison with a null mutation.
Results: Mice carrying the I195T variant showed resistance to high fat diet (HFD)-induced obesity, increased catecholamine-induced adipose tissue lipolysis and impaired ALK7 signaling, phenocopying the null mutants.
Diabetes
September 2023
Department of Medicine, University of California San Diego, La Jolla, CA.
Unlabelled: In obesity, CD11c+ innate immune cells are recruited to adipose tissue and create an inflammatory state that causes both insulin and catecholamine resistance. We found that ablation of Gnas, the gene that encodes Gαs, in CD11c expressing cells protects mice from obesity, glucose intolerance, and insulin resistance. Transplantation studies showed that the lean phenotype was conferred by bone marrow-derived cells and did not require adaptive immunity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!