Accumulating evidence suggests that reversible protein acetylation may be a major regulatory mechanism that rivals phosphorylation. With the recent cataloging of thousands of acetylation sites on hundreds of proteins comes the challenge of identifying the acetyltransferases and deacetylases that regulate acetylation levels. Sirtuins are a conserved family of NAD(+)-dependent protein deacetylases that are implicated in genome maintenance, metabolism, cell survival, and lifespan. SIRT3 is the dominant protein deacetylase in mitochondria, and emerging evidence suggests that SIRT3 may control major pathways by deacetylation of central metabolic enzymes. Here, to identify potential SIRT3 substrates, we have developed an unbiased screening strategy that involves a novel acetyl-lysine analogue (thiotrifluoroacetyl-lysine), SPOT-peptide libraries, machine learning, and kinetic validation. SPOT peptide libraries based on known and potential mitochondrial acetyl-lysine sites were screened for SIRT3 binding and then analyzed using machine learning to establish binding trends. These trends were then applied to the mitochondrial proteome as a whole to predict binding affinity of all lysine sites within human mitochondria. Machine learning prediction of SIRT3 binding correlated with steady-state kinetic k(cat)/K(m) values for 24 acetyl-lysine peptides that possessed a broad range of predicted binding. Thus, SPOT peptide-binding screens and machine learning prediction provides an accurate and efficient method to evaluate sirtuin substrate specificity from a relatively small learning set. These analyses suggest potential SIRT3 substrates involved in several metabolic pathways such as the urea cycle, ATP synthesis, and fatty acid oxidation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3042044 | PMC |
http://dx.doi.org/10.1021/cb100218d | DOI Listing |
Soft Matter
January 2025
School of Environmental, Civil, Agricultural and Mechanical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA.
The surface morphology of the developing mammalian brain is crucial for understanding brain function and dysfunction. Computational modeling offers valuable insights into the underlying mechanisms for early brain folding. Recent findings indicate significant regional variations in brain tissue growth, while the role of these variations in cortical development remains unclear.
View Article and Find Full Text PDFJ Alzheimers Dis
January 2025
Department of Neurology and the Franke Barrow Global Neuroscience Education Center, Barrow Neurological Institute, Phoenix, AZ, USA.
Background: The aim of this study was to examine the potential added value of including neuropsychiatric symptoms (NPS) in machine learning (ML) models, along with demographic features and Alzheimer's disease (AD) biomarkers, to predict decline or non-decline in global and domain-specific cognitive scores among community-dwelling older adults.
Objective: To evaluate the impact of adding NPS to AD biomarkers on ML model accuracy in predicting cognitive decline among older adults.
Methods: The study was conducted in the setting of the Mayo Clinic Study of Aging, including participants aged ≥ 50 years with information on demographics (i.
Endocr Metab Immune Disord Drug Targets
January 2025
Department of Orthopaedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China.
Background: Osteoporosis (OP) is a skeletal condition characterized by increased susceptibility to fractures. Programmed cell death (PCD) is the orderly process of cells ending their own life that has not been thoroughly explored in relation to OP.
Objective: This study is to investigate PCD-related genes in OP, shedding light on potential mechanisms underlying the disease.
EClinicalMedicine
January 2025
Medical Laboratory CSD, Kyiv 02000, Ukraine.
Background: Although the number of studies reporting war-induced effects on the health of the Ukrainian population has been growing, there are still little data on assessing patients with type 2 diabetes (T2D) during the war. This study aimed to evaluate the impact of war on T2D patients' health to define key risk factors promoting disease progression.
Methods: A survey covering various aspects of T2D patients' experience and glycemic control data was conducted from June 2022 to February 2024.
Cureus
December 2024
Department of Technology and Clinical Trials, Advanced Research, Deerfield Beach, USA.
This paper investigates the potential of artificial intelligence (AI) and machine learning (ML) to enhance the differentiation of cystic lesions in the sellar region, such as pituitary adenomas, Rathke cleft cysts (RCCs) and craniopharyngiomas (CP), through the use of advanced neuroimaging techniques, particularly magnetic resonance imaging (MRI). The goal is to explore how AI-driven models, including convolutional neural networks (CNNs), deep learning, and ensemble methods, can overcome the limitations of traditional diagnostic approaches, providing more accurate and early differentiation of these lesions. The review incorporates findings from critical studies, such as using the Open Access Series of Imaging Studies (OASIS) dataset (Kaggle, San Francisco, USA) for MRI-based brain research, highlighting the significance of statistical rigor and automated segmentation in developing reliable AI models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!