The “Millipede”, developed by Binnig and co-workers (Bining, G. K.; et al. IBM J. Res. Devel. 2000, 44, 323.), elegantly solves the problem of the serial nature of scanning probe lithography processes, by deploying massive parallelism. Here we fuse the “Millipede” concept with scanning near-field photolithography to yield a “Snomipede” that is capable of executing parallel chemical transformations at high resolution over macroscopic areas. Our prototype has sixteen probes that are separately controllable using a methodology that is, in principle, scalable to much larger arrays. Light beams generated by a spatial modulator or a zone plate array are coupled to arrays of cantilever probes with hollow, pyramidal tips. We demonstrate selective photodeprotection of nitrophenylpropyloxycarbonyl-protected aminosiloxane monolayers on silicon dioxide and subsequent growth of nanostructured polymer brushes by atom-transfer radical polymerization, and the fabrication of 70 nm structures in photoresist by a Snomipede probe array immersed under water. Such approaches offer a powerful means of integrating the top-down and bottom-up fabrication paradigms, facilitating the reactive processing of materials at nanometer resolution over macroscopic areas.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nl1018782DOI Listing

Publication Analysis

Top Keywords

scanning near-field
8
near-field photolithography
8
resolution macroscopic
8
macroscopic areas
8
parallel scanning
4
photolithography snomipede
4
snomipede “millipede”
4
“millipede” developed
4
developed binnig
4
binnig co-workers
4

Similar Publications

Terahertz scanning near-field optical microscopy for biomedical detection: Recent advances, challenges, and future perspectives.

Biotechnol Adv

December 2024

Center of Super-Resolution Optics and Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China. Electronic address:

Terahertz (THz) radiation is widely recognized as a non-destructive, label-free, and highly- sensitive tool for biomedical detections. Nevertheless, its application in precision biomedical fields faces challenges due to poor spatial resolution caused by intrinsically long wavelength characteristics. THz scanning near-field optical microscopy (THz-SNOM), which surpasses the Rayleigh criterion, offers micrometer and nanometer-scale spatial resolution, making it possible to perform precise bioinspection with THz imaging.

View Article and Find Full Text PDF

Three-Dimensional Visualization of Chiral Nano-Optical Field around Gold Nanoplates via Scanning Near-Field Optical Microscopy.

Nano Lett

December 2024

Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo, 169-8555, Japan.

In this study, we examine the three-dimensional chiral optical field in the vicinity of a gold nanoplate using aperture-type scanning near-field optical microscopy. Near-field imaging indicates that the chiral optical field shows a unique spatial distribution and depends on the incident polarization. We also evaluate the modal dependence of chiral optical fields, which reveals that the plasmon mode with E symmetry contributes substantially to the chiral optical field while that with A symmetry contributes little because of the high spatial symmetry.

View Article and Find Full Text PDF

Surface angled cracks on critical components in high-speed machinery can lead to fractures under stress and pressure, posing a significant threat to the operational safety of equipment. To detect surface angled cracks on critical components, this paper proposes a "Quantitative Detection Method for Surface Angled Cracks Based on Full-field Scanning Data". By analyzing different ultrasonic signals in the full-field scanning data from laser ultrasonics, the width, angle, and length of surface angled cracks can be determined.

View Article and Find Full Text PDF

Angle-Controlled Nanospectrum Switching from Lorentzian to Fano Lineshapes.

Nanomaterials (Basel)

November 2024

Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China.

The tunability of spectral lineshapes, ranging from Lorentzian to Fano profiles, is essential for advancing nanoscale photonic technologies. Conventional far-field techniques are insufficient for studying nanoscale phenomena, particularly within the terahertz (THz) range. In this work, we use a U-shaped resonant ring on a waveguide substrate to achieve precise modulation of Lorentzian, Fano, and antiresonance profiles.

View Article and Find Full Text PDF

Spintronic terahertz metasurface emission characterized by scanning near-field nanoscopy.

Nanophotonics

April 2024

School of Electronic and Information Engineering, and School of Cyber Science and Technology, Beihang University, Beijing, China.

Understanding the ultrafast excitation, detection, transportation, and manipulation of nanoscale spin dynamics in the terahertz (THz) frequency range is critical to developing spintronic THz optoelectronic nanodevices. However, the diffraction limitation of the sub-millimeter waves - THz wavelengths - has impaired experimental investigation of spintronic THz nano-emission. Here, we present an approach to studying laser THz emission nanoscopy from W|CoFeB|Pt metasurfaces with ∼60-nm lateral spatial resolution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!