A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Raman scattering at pure graphene zigzag edges. | LitMetric

AI Article Synopsis

  • Theory predicts that graphene devices with armchair and zigzag boundaries exhibit unique physics, requiring devices with pure chirality for experimental validation.
  • Exfoliated graphene flakes often have corners with odd angles, leading to mixed expectations about edge purity, which was not confirmed by previous Raman studies.
  • Recent confocal Raman spectroscopy of hexagonal holes created through anisotropic etching showed boundaries aligned with pure zigzag direction, offering strong evidence for the predicted Raman behavior linked to perfect edge chirality in graphene.

Article Abstract

Theory has predicted rich and very distinct physics for graphene devices with boundaries that follow either the armchair or the zigzag crystallographic directions. A prerequisite to disclose this physics in experiment is to be able to produce devices with boundaries of pure chirality. Exfoliated flakes frequently exhibit corners with an odd multiple of 30°, which raised expectations that their boundaries follow pure zigzag and armchair directions. The predicted Raman behavior at such crystallographic edges however failed to confirm pure edge chirality. Here, we perform confocal Raman spectroscopy on hexagonal holes obtained after the anisotropic etching of prepatterned pits using carbothermal decomposition of SiO(2). The boundaries of the hexagonal holes are aligned along the zigzag crystallographic direction and leave hardly any signature in the Raman map indicating unprecedented purity of the edge chirality. This work offers the first opportunity to experimentally confirm the validity of the Raman theory for graphene edges.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nl102526sDOI Listing

Publication Analysis

Top Keywords

devices boundaries
8
boundaries follow
8
zigzag crystallographic
8
edge chirality
8
hexagonal holes
8
raman
5
raman scattering
4
pure
4
scattering pure
4
pure graphene
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!