Human activities have strong impacts on ecosystem functioning through their effect on abiotic factors and on biodiversity. There is also growing evidence that species functional traits link changes in species composition and shifts in ecosystem processes. Hence, it appears to be of utmost importance to quantify modifications in the functional structure of species communities after human disturbance in addition to changes in taxonomic structure. Despite this fact, there is still little consensus on the actual impacts of human-mediated habitat alteration on the components of biodiversity, which include species functional traits. Therefore, we studied changes in taxonomic diversity (richness and evenness), in functional diversity, and in functional specialization of estuarine fish communities facing drastic environmental and habitat alterations. The Terminos Lagoon (Gulf of Mexico) is a tropical estuary of primary concern for its biodiversity, its habitats, and its resource supply, which have been severely impacted by human activities. Fish communities were sampled in four zones of the Terminos Lagoon 18 years apart (1980 and 1998). Two functions performed by fish (food acquisition and locomotion) were studied through the measurement of 16 functional traits. Functional diversity of fish communities was quantified using three independent components: richness, evenness, and divergence. Additionally, we measured the degree of functional specialization in fish communities. We used a null model to compare the functional and the taxonomic structure of fish communities between 1980 and 1998. Among the four largest zones studied, three did not show strong functional changes. In the northern part of the lagoon, we found an increase in fish richness but a significant decrease of functional divergence and functional specialization. We explain this result by a decline of specialized species (i.e., those with particular combinations of traits), while newly occurring species are redundant with those already present. The species that decreased in abundance have functional traits linked to seagrass habitats that regressed consecutively to increasing eutrophication. The paradox found in our study highlights the need for a multifaceted approach in the assessment of biodiversity changes in communities under pressure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1890/09-1310.1 | DOI Listing |
Acta Parasitol
January 2025
Laboratory of Morpho-Molecular Integration and Technologies, Federal Rural University of the Amazon (UFRA), Belém, State of Pará, Brazil.
Purpose: This work described a new species of Ceratomyxa, based on morphological and phylogenetic analyzes of myxospores collected from the gallbladder of the fish Astyanax mexicanus.
Methods: Sixty-two specimens were captured, between December 2022 and February 2024, in the Flexal River, in the community of Tessalônica, state of Amapá. The specimens were transported alive to the Laboratory of Morphophysiology and Animal Health, at the State University of Amapá, where the studies were carried out.
Pediatr Res
January 2025
Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA.
Background: This study aimed to investigate associations between sociodemographic factors and dietary intake among a diverse population of early adolescents ages 10-13 years in the United States.
Methods: We examined data from the Adolescent Brain Cognitive Development (ABCD) Study in Year 2 (2018-2020, ages 10-13 years, N = 10,280). Multivariable linear regression models were conducted to estimate the adjusted associations between sociodemographic factors (age, sex, race and ethnicity, household income, parental education) and dietary intake of various food groups, measured by the Block Kids Food Screener.
Environ Res
January 2025
Key laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai 201306, China. Electronic address:
Global change stressors, including climate warming, eutrophication, and small-sized omnivorous fish, may exert interactive effects on the food webs and functioning of shallow lakes. Periphyton plays a central role in the primary production and nutrient cycling of shallow lakes but constitutes a complex community composed of eukaryotes and prokaryotes that may exhibit different responses to multiple environmental stressors with implications for the projections of the effects of global change on shallow lakes. We analyzed the effects of warming, nutrient enrichment, small omnivorous fish and their interactions on eukaryotic and prokaryotic periphyton structures in shallow lake mesocosms.
View Article and Find Full Text PDFEcology
January 2025
Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, California, USA.
Understanding how foundation species recover from disturbances is key for predicting the future of ecosystems in the Anthropocene. Coral reefs are dynamic ecosystems that can undergo rapid declines in coral abundance following disturbances. Understanding why some reefs recover quickly from these disturbances whereas others recover slowly (or not at all) gives insight into the drivers of community resilience.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Marine Chemistry & Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA.
Unlabelled: The mummichog, , an abundant estuarine fish broadly distributed along the eastern coast of North America, has repeatedly evolved tolerance to otherwise lethal levels of aromatic hydrocarbon exposure. This tolerance is linked to reduced activation of the aryl hydrocarbon receptor (AHR) signaling pathway. In other animals, the AHR has been shown to influence the gastrointestinal-associated microbial community, particularly when activated by the model toxic pollutant 3,3',4,4',5-pentachlorobiphenyl (PCB-126) and other dioxin-like compounds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!