In this paper, an online self-organizing scheme for Parsimonious and Accurate Fuzzy Neural Networks (PAFNN), and a novel structure learning algorithm incorporating a pruning strategy into novel growth criteria are presented. The proposed growing procedure without pruning not only simplifies the online learning process but also facilitates the formation of a more parsimonious fuzzy neural network. By virtue of optimal parameter identification, high performance and accuracy can be obtained. The learning phase of the PAFNN involves two stages, namely structure learning and parameter learning. In structure learning, the PAFNN starts with no hidden neurons and parsimoniously generates new hidden units according to the proposed growth criteria as learning proceeds. In parameter learning, parameters in premises and consequents of fuzzy rules, regardless of whether they are newly created or already in existence, are updated by the extended Kalman filter (EKF) method and the linear least squares (LLS) algorithm, respectively. This parameter adjustment paradigm enables optimization of parameters in each learning epoch so that high performance can be achieved. The effectiveness and superiority of the PAFNN paradigm are demonstrated by comparing the proposed method with state-of-the-art methods. Simulation results on various benchmark problems in the areas of function approximation, nonlinear dynamic system identification and chaotic time-series prediction demonstrate that the proposed PAFNN algorithm can achieve more parsimonious network structure, higher approximation accuracy and better generalization simultaneously.

Download full-text PDF

Source
http://dx.doi.org/10.1142/S0129065710002486DOI Listing

Publication Analysis

Top Keywords

fuzzy neural
12
structure learning
12
learning
9
online self-organizing
8
self-organizing scheme
8
scheme parsimonious
8
parsimonious accurate
8
accurate fuzzy
8
neural networks
8
growth criteria
8

Similar Publications

This research introduces an innovative approach to optimal control for a class of linear systems with input saturation. It leverages the synergy of Takagi-Sugeno (T-S) fuzzy models and reinforcement learning (RL) techniques. To enhance interpretability and analytical accessibility, our approach applies T-S models to approximate the value function and generate optimal control laws while incorporating prior knowledge.

View Article and Find Full Text PDF

The glycocalyx and its associated endothelial surface layer which lines all cell membranes and most tissues, dwarfs the phospholipid membrane of cells in extent. Its major components are sulphated polymers like heparan and chondroitin sulphates and hyaluronic acid. These form a fuzzy layer of unknown structure and function.

View Article and Find Full Text PDF

AI-based processing of future prepared foods: Progress and prospects.

Food Res Int

February 2025

State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, 214122 Wuxi, Jiangsu, China.

The prepared foods sector has grown rapidly in recent years, driven by the fast pace of modern living and increasing consumer demand for convenience. Prepared foods are taking an increasingly important role in the modern catering industry due to their ease of storage, transportation, and operation. However, their processing faces several challenges, including labor shortages, inefficient sorting, inadequate cleaning, unsafe cutting processes, and a lack of industry standards.

View Article and Find Full Text PDF

This study focused on simulating the adsorption-based separation of Methylene Blue (MB) dye utilising Oryza sativa straw biomass (OSSB). Three distinct modelling approaches were employed: artificial neural networks (ANN), adaptive neuro-fuzzy inference systems (ANFIS), and response surface methodology (RSM). To evaluate the adsorbent's potential, assessments were conducted using Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!