Epidemiological screening combined with serological tests has become an important tool at blood banks for the characterization of donors with or without Trypanosoma cruzi infection. Thus, the objective of the present study was to describe the sociodemographic and epidemiological characteristics of blood donors with non-negative serology for T. cruzito determine possible risk factors associated with serological ineligibility. Sociodemographic and epidemiological data were collected by analysis of patient histories and interviews. The data were analyzed descriptively using absolute and relative frequencies and odds ratio (OR) evaluation. The frequency of serological ineligibility was 0.28%, with a predominance of inconclusive reactions (52%) and seropositivity among first-time donors (OR = 607), donors older than 30 years (OR = 3.7), females (OR = 1.9), donors from risk areas (OR = 4) and subjects living in rural areas (OR = 1.7). The risk of seropositivity was higher among donors who had contact with the triatomine vector (OR = 11.7) and those with a family history of Chagas disease (OR = 4.8). The results demonstrate the value of detailed clinical-epidemiological screening as an auxiliary tool for serological definition that, together with more specific and more sensitive laboratory methods, will guarantee a higher efficacy in the selection of donors at blood centres.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1590/s0074-02762010000600012 | DOI Listing |
J Infect Dev Ctries
December 2024
Department of Pharmacology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
Introduction: Convalescent plasma (CP) therapy is a form of passive immunization which has been used as a treatment for coronavirus disease 2019 (COVID-19). This study aims to evaluate the efficacy and safety of CP therapy in patients with severe COVID-19.
Methodology: In this retrospective cohort study, 50 patients with severe COVID-19 treated with CP at Shahid Beheshti Hospital, Kashan, in 2019 were evaluated.
BMC Infect Dis
January 2025
Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, North 15 West 7, Kita-ku, Sapporo, 060-8638, Japan.
Background: Mycobacterium avium complex (MAC) is a common pathogen causing non-tuberculous mycobacterial infections, primarily affecting the lungs. Disseminated MAC disease occurs mainly in immunocompromised individuals, such as those with acquired immunodeficiency syndrome, hematological malignancies, or those positive for anti-interferon-γ antibodies. However, its occurrence in solid organ transplant recipients is uncommon.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.
Optimal fluid strategy for laparoscopic donor nephrectomy (LDN) remains unclear. LDN has been a domain for liberal fluid management to ensure graft perfusion, but this can result in adverse outcomes due to fluid overload. We compared postoperative outcome of living kidney donors according to the intraoperative fluid management.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physics, Khalifa University, Abu Dhabi, United Arab Emirates.
The current research aims to determine the impact of orange peel dye (OPD), an eco-friendly addition, on the optical properties of biodegradable polymers. This study investigates the enhancement of optical properties in solid electrolytes based on chitosan (CS) and glycerol, with varying OPD concentrations. UV-Vis-NIR spectroscopy revealed significantly enhanced UV-visible light absorption in the 200-500 nm region and effective UV light blocking.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA.
The aberrant vascular response associated with tendon injury results in circulating immune cell infiltration and a chronic inflammatory feedback loop leading to poor healing outcomes. Studying this dysregulated tendon repair response in human pathophysiology has been historically challenging due to the reliance on animal models. To address this, our group developed the human tendon-on-a-chip (hToC) to model cellular interactions in the injured tendon microenvironment; however, this model lacked the key element of physiological flow in the vascular compartment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!