https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=20944910&retmode=xml&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&term=photodynamic+therapy&datetype=edat&usehistory=y&retmax=5&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&WebEnv=MCID_67957aa97b5bc5a2c8052230&query_key=1&retmode=xml&retmax=5&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09 Photodynamic therapy: a review of the literature and image documentation. | LitMetric

Photodynamic therapy: a review of the literature and image documentation.

An Bras Dermatol

Universidade Federal Fluminense, Niterói, RJ, Brasil.

Published: April 2011

Photodynamic therapy (PDT) consists of a chemical reaction activated by light energy that is used to selectively destroy tissue. The reaction requires a photosensitizer in the target tissue, a light source and oxygen. The most extensively studied photosensitizing agents for PDT are 5-aminolevulinic acid for the treatment of actinic keratosis and methyl-aminolevulinate, which has been approved for the treatment of actinic keratosis, basal cell carcinoma and Bowen's disease. The light sources used in photodynamic therapy should emit light at wavelengths within the absorption spectrum of the photosensitizer used in PDT treatment. Light emitting diode (LED) lamps are indicated for the photodynamic treatment of nonmelanoma skin cancer. PDT should be considered as a therapeutic option, particularly in the case of patients with superficial, multiple or disseminated lesions and for immunosuppressed patients. More recently, PDT has been indicated for a wide range of dermatological conditions such as photo-damaged skin, acne, hidradenitis, scleroderma, psoriasis, warts and leishmaniosis, among others. This article provides an extensive review of photodynamic therapy, its mechanisms, indications and results.

Download full-text PDF

Source
http://dx.doi.org/10.1590/s0365-05962010000400011DOI Listing

Publication Analysis

Top Keywords

photodynamic therapy
16
treatment actinic
8
actinic keratosis
8
photodynamic
5
pdt
5
light
5
therapy review
4
review literature
4
literature image
4
image documentation
4

Similar Publications

Application of Light-Responsive Nanomaterials in Bone Tissue Engineering.

Pharmaceutics

January 2025

Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai 201300, China.

The application of light-responsive nanomaterials (LRNs) in bone tissue engineering shows broad prospects, especially in promoting bone healing and regeneration. With a deeper understanding of the mechanisms of bone defects and healing disorders, LRNs are receiving increasing attention due to their non-invasive, controllable, and efficient properties. These materials can regulate cellular biological reactions and promote bone cell adhesion, proliferation, and differentiation by absorbing specific wavelengths of light and converting them into physical and chemical signals.

View Article and Find Full Text PDF

: The mechanism of polysaccharide-based nanocarriers in enhancing photodynamic immunotherapy in colorectal cancer (CRC) remains poorly understood. : The effects of TPA-3BCP-loaded cholesteryl hemisuccinate- polysaccharide nanoparticles (DOP@3BCP NPs) and their potential molecular mechanism of action in a tumor-bearing mouse model of CRC were investigated using non-targeted metabolomics and transcriptomics. Meanwhile, a histopathological analysis (H&E staining, Ki67 staining, and TUNEL assay) and a qRT-PCR analysis revealed the antitumor effects of DOP@3BCP NPs with and without light activation.

View Article and Find Full Text PDF

Oral candidiasis, predominantly caused by , presents significant challenges in treatment due to increasing antifungal resistance and biofilm formation. Antimicrobial photodynamic therapy (aPDT) using natural photosensitizers like riboflavin and hypericin offers a potential alternative to conventional antifungal therapies. : A systematic review was conducted to evaluate the efficacy of riboflavin- and hypericin-mediated aPDT in reducing Candida infections.

View Article and Find Full Text PDF

The effectiveness of ultraviolet-C light-emitting diodes (UVC LEDs) is currently limited by the lack of suitable encapsulation materials, restricting their use in sterilization, communication, and in vivo cancer tumor inhibition. This study evaluates various silicone oils for UVC LED encapsulation. A material aging experiment was conducted on CF1040 (octamethylcyclotetrasiloxane), HF2020 (methyl hydro polysiloxanes), and MF2020-1000 (polydimethylsiloxane) under UVC radiation for 1000 h.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) involves the topical application of a photosensitizer and its activation by visible light, leading to the generation of protoporphyrin IX (PpIX) and reactive oxygen species. Daylight photodynamic therapy (dPDT), a variant utilizing natural sunlight as the energy source, enhances procedural flexibility by eliminating the need for specialized equipment. dPDT has been effectively used in dermatology to treat various cutaneous disorders, including neoplastic and infectious diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!