HIF-1alpha response to hypoxia is functionally separated from the glucocorticoid stress response in the in vitro regenerating human skeletal muscle.

Am J Physiol Regul Integr Comp Physiol

Laboratory for Molecular Neurobiology, Institute of Pathophysiology, Faculty of Medicine, Univ. of Ljubljana, Zaloska 4, 1000 Ljubljana, Slovenia.

Published: December 2010

Injury of skeletal muscle is followed by muscle regeneration in which new muscle tissue is formed from the proliferating mononuclear myoblasts, and by systemic response to stress that exposes proliferating myoblasts to increased glucocorticoid (GC) concentration. Because of its various causes, hypoxia is a frequent condition affecting skeletal muscle, and therefore both processes, which importantly determine the outcome of the injury, often proceed under hypoxic conditions. It is therefore important to identify and characterize in proliferating human myoblasts: 1) response to hypoxia which is generally organized by hypoxia-inducible factor-1α (HIF-1α); 2) response to GCs which is mediated through the isoforms of glucocorticoid receptors (GRs) and 11β-hydroxysteroid dehydrogenases (11β-HSDs), and 3) the response to GCs under the hypoxic conditions and the influence of this combination on the factors controlling myoblast proliferation. Using real-time PCR, Western blotting, and HIF-1α small-interfering RNA silencing, we demonstrated that cultured human myoblasts possess both, the HIF-1α-based response to hypoxia, and the GC response system composed of GRα and types 1 and 2 11β-HSDs. However, using combined dexamethasone and hypoxia treatments, we demonstrated that these two systems operate practically without mutual interactions. A seemingly surprising separation of the two systems that both organize response to hypoxic stress can be explained on the evolutionary basis: the phylogenetically older HIF-1α response is a protection at the cellular level, whereas the GC stress response protects the organism as a whole. This necessitates actions, like downregulation of IL-6 secretion and vascular endothelial growth factor, that might not be of direct benefit for the affected myoblasts.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpregu.00133.2010DOI Listing

Publication Analysis

Top Keywords

response hypoxia
12
skeletal muscle
12
response
10
stress response
8
hypoxic conditions
8
human myoblasts
8
hif-1α response
8
response gcs
8
hypoxia
5
muscle
5

Similar Publications

The effect of different immobilization approaches on red-eared sliders.

Sci Rep

December 2024

Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, 571158, China.

The ethical issues surrounding sacrifice methods in animal experimentation have garnered increasing attention, making immobilization and sedation an integral part of the sacrifice process for experimental animals. Currently, internationally recognized general sacrifice methods for commonly used laboratory animals have been established, but there remains significant controversy over the sacrifice methods for turtles. To explore the effectiveness of various immobilization methods and their impact on stress-related indicators in turtles, this study used red-eared sliders (Trachemys scripta elegans) as subjects.

View Article and Find Full Text PDF

SUZ12-Increased NRF2 Alleviates Cardiac Ischemia/Reperfusion Injury by Regulating Apoptosis, Inflammation, and Ferroptosis.

Cardiovasc Toxicol

December 2024

Department of Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, No. 3 Chongwenmennei Street, Dongcheng District, Beijing, 100730, China.

Nuclear factor erythroid 2-related factor 2 (NRF2) is a redox-sensitive transcriptional factor that enables cells to resist oxidant responses, ferroptosis and inflammation. Here, we set out to probe the effects of NRF2 on cardiomyocyte injury under acute myocardial infarction (AMI) condition and its potential mechanism. Human cardiomyocytes were exposed to hypoxia/reoxygenation (H/R) to induce cell injury.

View Article and Find Full Text PDF

Cluster Headache and Hypoxia: Breathing New Life into an Old Theory, with Novel Implications.

Neurol Int

December 2024

Department of Psychology, University of Maine, 301 Williams Hall, Orono, ME 04469-5742, USA.

Cluster headache is a severe, poorly understood disorder for which there are as yet virtually no rationally derived treatments. Here, Lee Kudrow's 1983 theory, that cluster headache is an overly zealous response to hypoxia, is updated according to current understandings of hypoxia detection, signaling, and sensitization. It is shown that the distinctive clinical characteristics of cluster headache (circadian timing of attacks and circannual patterning of bouts, autonomic symptoms, and agitation), risk factors (cigarette smoking; male gender), triggers (alcohol; nitroglycerin), genetic findings (GWAS studies), anatomical substrate (paraventricular nucleus of the hypothalamus, solitary tract nucleus/NTS, and trigeminal nucleus caudalis), neurochemical features (elevated levels of galectin-3, nitric oxide, tyramine, and tryptamine), and responsiveness to treatments (verapamil, lithium, melatonin, prednisone, oxygen, and histamine desensitization) can all be understood in terms of hypoxic signaling.

View Article and Find Full Text PDF

Regulation of Oxygen in the Tumor Microenvironment Synergizes with Immunotherapy to Suppress Tumor Progression.

J Funct Biomater

November 2024

Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.

Hypoxia represents a crucial characteristic of the tumor microenvironment, which is closely related to cell proliferation, angiogenesis, and metabolic responses. These factors will further promote tumor progression, increase tumor invasion, and enhance tumor metastasis potential. A hypoxic microenvironment will also inhibit the activity of infiltrated immune cells in the tumor microenvironment, leading to the failure of cancer immunotherapy.

View Article and Find Full Text PDF

Exogenous acetate attenuates inflammatory responses through HIF-1α-dependent glycolysis regulation in macrophage.

Cell Mol Life Sci

December 2024

Faculty of Anesthesiology, Changhai Hospital (First Affiliated Hospital of Naval Medical University), Naval Medical University, Shanghai, 200433, China.

Cytokine storm is a hallmark for acute systemic inflammatory disease like sepsis. Intrinsic microbiome-derived short-chain fatty acid (SCFAs) like acetate modulates immune cell function and metabolism has been well studied. However, it remains poorly investigated about the effects and the underlying mechanism of exogenous acetate in acute inflammation like sepsis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!