In normal adult retinas, NGF receptor TrkA is expressed in retinal ganglion cells (RGC), whereas glia express p75(NTR). During retinal injury, endogenous NGF, TrkA, and p75(NTR) are up-regulated. Paradoxically, neither endogenous NGF nor exogenous administration of wild type NGF can protect degenerating RGCs, even when administered at high frequency. Here we elucidate the relative contribution of NGF and each of its receptors to RGC degeneration in vivo. During retinal degeneration due to glaucoma or optic nerve transection, treatment with a mutant NGF that only activates TrkA, or with a biological response modifier that prevents endogenous NGF and pro-NGF from binding to p75(NTR) affords significant neuroprotection. Treatment of normal eyes with an NGF mutant-selective p75(NTR) agonist causes progressive RGC death, and in injured eyes it accelerates RGC death. The mechanism of p75(NTR) action during retinal degeneration due to glaucoma is paracrine, by increasing production of neurotoxic proteins TNF-α and α(2)-macroglobulin. Antagonists of p75(NTR) inhibit TNF-α and α(2)-macroglobulin up-regulation during disease, and afford neuroprotection. These data reveal a balance of neuroprotective and neurotoxic mechanisms in normal and diseased retinas, and validate each neurotrophin receptor as a pharmacological target for neuroprotection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2998128PMC
http://dx.doi.org/10.1074/jbc.M110.147801DOI Listing

Publication Analysis

Top Keywords

endogenous ngf
12
ngf
8
retinal degeneration
8
degeneration glaucoma
8
rgc death
8
tnf-α α2-macroglobulin
8
p75ntr
7
retinal
5
chronic acute
4
acute models
4

Similar Publications

In situ biosensing for cell viability and drug evaluation in 3D extracellular matrix cultures: Applications in cytoprotection of oxidative stress injury.

Talanta

January 2025

Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Faculty of Pharmacy, Fujian Medical University, Fuzhou, 350122, China. Electronic address:

The rise of extracellular matrix (ECM)-supported three-dimensional (3D) cell culture systems which bridge the gap between in vitro culture and in vivo living tissue for pharmacological models has increased the need for simple and robust cell viability assays. This study presents the development of an effective biosensing assay for in situ monitoring of the catecholamine neurotransmitter exocytosis levels for cell viability assessment within complicated cell-encapsulated hydrogel milieu. Firstly, the biosensing assay demonstrated the distinction among four pheochromocytoma (PC12) cell lines with varying degrees of differentiation and the discrepancy in cellular neurosecretory capacity between two-dimensional (2D) monolayer and 3D agarose hydrogel culture conditions, accompanied by morphological distinctions.

View Article and Find Full Text PDF
Article Synopsis
  • The text discusses the edible and medicinal mushroom known for its compounds, hericenones and erinacines, which can stimulate nerve growth factor (NGF) synthesis, potentially aiding in dementia prevention and treatment.
  • Recent research successfully synthesized hericenones C-H, leading to an exploration of whether similar synthetic intermediates exist naturally in the mushroom’s fruiting bodies.
  • Through advanced analysis techniques (like LC-MS/MS), the study confirmed the presence of these intermediates, paving the way for a proposed biocompatible synthesis pathway for these beneficial compounds.
View Article and Find Full Text PDF

Neurotrophic factors are endogenous proteins that promote the survival of various neuronal cells. Increasing evidence has suggested a key role for brain-derived neurotrophic factor (BDNF) in the dopaminergic neurotoxicity associated with Parkinson's Disease (PD). This study explores the therapeutic potential of filbertone, a bioactive compound found in hazelnuts, in neurodegeneration, focusing on its effects on neurotrophic factors and the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway.

View Article and Find Full Text PDF

Role of endogenous nerve growth factor in laryngeal airway hyperreactivity and laryngeal inflammation induced by intermittent hypoxia in rats.

Respir Physiol Neurobiol

January 2025

Master program in Medical Physiology, School of Medicine, Tzu Chi University, Hualien, Taiwan; Department of Physiology, School of Medicine, Tzu Chi University, Hualien, Taiwan. Electronic address:

Obstructive sleep apnea, characterized by airway exposure to intermittent hypoxia (IH), is associated with laryngeal airway hyperreactivity (LAH) and laryngeal inflammation. The sensitization of capsaicin-sensitive superior laryngeal afferents (CSSLAs) by inflammatory mediators has been implicated in the pathogenesis of LAH. Nerve growth factor (NGF) is an inflammatory mediator that acts on tropomyosin receptor kinase A (TrkA) and the p75 neurotrophin receptor (p75) to induce lower airway hyperresponsiveness.

View Article and Find Full Text PDF

Chronic pain remains a significant health challenge with limited effective treatments. This study investigates the metabolic changes underlying pain progression and resolution, uncovering a novel compensatory mechanism in sensory neurons. Using the hyperalgesic priming model in male mice, we demonstrate that nerve growth factor (NGF) initially disrupted mitochondrial pyruvate oxidation, leading to acute allodynia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!