Two hundred and six F2:3 families from the cross between TD22 and HT-1-1-1-1 were used for dynamic QTL research of tomato soluble solid content and correlative traits, and correlation analysis of soluble solid content (SSC) with fruit weight (FW), fruit shape index (FSI), soluble sugar, vitamin C (VC), and organic acid at three different development stages. The results showed that there were differences in QTL loci for soluble solid content during the three stages of tomato fruit development. Four and eight QTLs were detected in green ripe stage and red ripe stage, respectively. These QTLs showed dynamic changes, and two markers LEaat006 and Tomato|TC162363 were detected in two stages, which might be useful in molecular-marker assisted selection (MAS). The result also showed that there was extremely significant difference in SSC at the three different stages, and its main correlative traits were different at different stages. Soluble solid content was positively correlated with soluble sugar, but negatively correlated with FW at green ripe stage; SSC was positively correlated with soluble sugar and organic acid at yellow ripe stage; SSC was positively correlated with soluble sugar and organic acid, but negatively correlated with fruit weight at red ripe stage. Based on correlation analysis of these traits, linear regression model was constructed. Non-tested varieties were used to test the fitness, and the result showed that it is well fitted, and the fitness is above 95%.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3724/sp.j.1005.2010.01077 | DOI Listing |
AAPS PharmSciTech
January 2025
Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
Amorphous solid dispersion (ASD) is one of the most studied strategies for improving the dissolution performance of poorly water-soluble drugs, but ASDs often have low drug loadings, thereby necessitating larger dosage sizes. This study intended to create Soluplus® (SOL)-based microparticle ASDs with high drug loading (up to 60 w/w%) and long-term stability (at least 16 months) using electrospraying to enhance the dissolution of poorly water-soluble celecoxib (CEL). X-ray diffraction (XRD) and differential scanning calorimetry (DSC) analyses showed that the electrosprayed SOL-CEL microparticles were amorphous, and Fourier transform infrared spectroscopy (FTIR) data indicated the presence of hydrogen bonding between SOL and CEL in the microparticles, which helped stabilize the ASDs.
View Article and Find Full Text PDFChem Pharm Bull (Tokyo)
January 2025
Department of Molecular Pharmaceutics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan.
Optimization of the manufacturing process based on scientific evidence is essential for quality control of active pharmaceutical ingredients. Real-time monitoring can ensure the production of stable quality crystals in the crystallization process. Raman spectroscopy is an attractive tool for pharmaceutical quality evaluation and process analytical technology because of its ability to analyze samples non-destructively and rapidly.
View Article and Find Full Text PDFJ Pharm Sci
January 2025
Department of Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA. Electronic address:
It is desirable but remains challenging to develop high drug load amorphous solid dispersions (ASDs) without compromising their quality attributes and bio-performance. In this work, we investigated the impacts of formulation variables, such as drug loading (DL) and polymer type, on dissolution behavior, diffusive flux, and in vitro drug absorption of ASDs of a high T compound, GDC-6893. ASDs with two polymers (HPMCAS and PVPVA) and various DLs (20 - 80%) were produced by spray drying and their drug-polymer miscibility was evaluated using solid-state nuclear magnetic resonance (ssNMR).
View Article and Find Full Text PDFJ Pharm Sci
January 2025
Department of Pharmaceutics, College of Pharmacy, King Saud University, POBOX-2457, Riyadh 11451, Kingdom of Saudi Arabia; Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia. Electronic address:
Background And Purpose: Liquid self-nanoemulsifying drug delivery systems (SNEDDS) face challenges related to stability, handling, and storage. In particular, lipophilic and unstable drugs, such as ramipril (RMP) and thymoquinone (THQ), face challenges in oral administration due to poor aqueous solubility and chemical instability. This study aimed to develop and optimize multi-layer self-nanoemulsifying pellets (ML-SNEP) to enhance the stability and dissolution of ramipril (RMP) and thymoquinone (THQ).
View Article and Find Full Text PDFInt J Pharm
January 2025
EPSRC CMAC Future Manufacturing Research Hub, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 99 George Street, Glasgow G1 1RD UK; The Cancer Research UK Formulation Unit, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St, Glasgow G4 0RE UK.
Oral drug delivery remains the preferred method of drug administration but due to poor solubility many active pharmaceutical ingredients (APIs) are ill suited to this. A number of methods to improve solubility of poorly soluble Biopharmaceutical Classification System (BCS) Class II drugs already exist but there is a lack of scalable, flexible methods. As such the current study applies the innovative technique of aerosol jet printing to increase the dissolution capabilities of a Class II drug in a manner which permits flexibility to allow dosage form tailoring.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!